Bachelor of Technology (Computer Science & Engineering) Scheme of Studies/Examination Semester VII

S. No.	Course No.	Subject	L:T:P	Hours/ Week	E	Examination Schedule					
					Major Test	Minor Test	Practical	Total			
1	CSE 401N	Unix & Linux Program- ming	4:0:0	4	75	25	0	100	3		
2	CSE 403N	Computer Graphics and Animation	4:0:0	4	75	25	0	100	3		
3	PE-I	Elective* – I	3:0:0	3	75	25	0	100	3		
4	PE-II	Elective* – II	3:0:0	3	75	25	0	100	3		
5	CSE 405N	Computer Graphics Lab	0:0:2	2	0	40	60	100	3		
6	CSE 407N	Project-I**	0:0:9	9	0	100	100	200	3		
7	CSE 409N	Unix & Linux Program- ming Lab	0:0:2	2	0	40	60	100	3		
8	CSE 411N	Seminar	0:0:2	2	0	100	0	100			
9	CSE 413N	Industrial Training (Viva- Voce)***				100	0	100			
		Total		29	300	480	220	1000			

Code	PE-I	Code	PE-II
CSE-415N	Object Oriented Software Engineering	CSE-421N	Agile Software Engineering
CSE-417N	Cyber Security	CSE-423N	Big Data and Analytics
CSE-419N	Cryptography & Information Security	CSE-425N	Expert Systems

Note:

*The students will choose any two departmental electives courses out of the given elective list in 7thSemester.

**Project should be initiated in the beginning of 7thsemester, and should be completed by the end of 8thsemester with good Report and power-point Presentation etc.

***4-6 weeks hand on training completed after 6thSemester Exams.

CSE-401N	Unix & Linux Programming								
Lecture	Tutorial	Tutorial Practical Major Test Minor Test Total Time							
4	0	0	75	25	100	3 Hrs.			
Purpose	Introduce	Introduces commands and numerous programming concepts and application							
	domains to cover important topics for implementation of the Unix								
	programm	programming concepts.							
			Course Outco	mes (CO)					
CO1	To learn ba	asic and adv	anced Unix Cor	mmands.					
CO2	Expose the	e role of filter	s and file comp	ression techniqu	les.				
CO3	To explore knowledge of programming language development tools.								
CO4	To expand	knowledge	of Unix/Linux sy	/stem administra	ation and netwo	rking.			

Unit I: Basic Command Usage

Linux Startup: User accounts, accessing Linux - starting and shutting processes, Logging in andLogging out, Unix commands like zip, unzip, pack, unpack, compress, uncompress, Shell Programming, Unix file system: Linux/Unix files, i-nodes and structure, file systemrelated commands, Shell as command processor, shell variables, creating command substitution, scripts, functions, conditionals, loops, customizing environment

Unit II: Filters and File Compression

Regular Expressions and Filters: Introducing regular expressions patterns, syntax, character classes, quantifiers, introduction to grep, egrep, sed, programming with awk and perl, File Compression Techniques: data redundancy elimination using fingerprint generation deduplication and data similarities removal using delta techniques for data reduction storage, parallel compression with Xdelta utility.

Unit III: Program Development Tools

The C Environment: C compiler, vi editor, compiler options, managing projects, memory management, use of makefile, cmake, dependency calculations, memory management – static and dynamic memory, static and dynamic libraries, dynamic loader, debugging tools like gdb, fixed-size and variable-size blocks of data files chunks divisor chunking techniques like Frequency Based Chunking and Content Defined Chunking Unix based open source coding.

Unit IV: Process Control

Processes in Linux: Processes, starting and stopping processes, initialization processes, rc and init files, job control - at, batch, cron, time, network files, security, privileges, authentication, password administration, archiving, Signals and signal handlers, Threading, Linux I/O system, Networking tools like ping, telnet, ftp, route, Firewalls, Backup and Restore tar, cpio, dd. Case Study: PCOMPRESS open source free software

Text Books:

- 1. John Goerzen: Linux Programming Bible, IDG Books, New Delhi, 2014.
- 2. Sumitabha Das: Unix Concept and Applications, Fourth Edition TMH, 2015.
- 3. Neil Matthew, Richard Stones: Beginning Linux Programming, 4th. Edition, Wrox-Shroff, 2011.
- 4. Welsh & Kaufmann: Running Linux, O'Reiley & Associates, 2013.

Reference Book:

1. B.M. Harwani, Unix and Shell Programming, Oxford University Press, 2013.

CSE-403N	Computer Graphics and Animation							
Lecture	Tutorial	Practical	Major Test	Minor Test	Total	Time		
4	0	0	75	25	100	03 Hrs.		
Purpose	Introduces Computer Graphics that help in designing different kinds of static							
	and movable objects.							
Course Outcomes (CO)								
CO1	Explore the	e backgroun	d and standard	line and circle d	rawing algorit	hms.		
CO2	Exposure	of various tra	insformation ap	proaches and its	s comparative	e analysis.		
CO3	Illustrate P	rojection and	d clipping with e	explore different	techniques.			
CO4	Apply design principles to create different curves and explore hidden lines and surface techniques.							

Unit-I

Computer Graphics applications, Display Devices, Point & Positioning Devices, Plotting Techniques for point and Line, Line drawing algorithms: DDA, Bresenhams's Circle drawing algorithms, Filled area algorithms: Scan line, Polygon filling algorithms, Boundary filled algorithms.

Unit-II

Window to view port transformation, Window to view port mapping, Two Dimensional transformation: translation, scaling, rotation, reflection and Shear, Homogeneous Coordinate system.

3-D transformation: Rotation, Shear, translation, Numerical Problems of transformation viewing pipeline.

Unit-III

Clipping: Point & Line clipping algorithm, 4-bit code algorithm, Cohen-Sutherland Line clipping algorithms, Liang-Barsky line clipping algorithms. Polygon clipping: Sutherland-Hodgeman Polygon clipping algorithm. Curve clipping, Text clipping.

Projection: Parallel, Perspective, Vanishing Points.

Unit-IV

Representation of 3-D Curves and Surfaces: interpolation and approximation alpines, parametric conditions, Geometric continuity conditions, Beizer curves and surfaces: properties of beizer curves, beizer surfaces.

Hidden Surfaces removal: Hidden surface elimination, depth buffer algorithm, scan line coherence and area coherence algorithm, priority algorithm

Text Books

- 1. Donald Hearn & M.Pauline Baker, Computer Graphics, 2nd Edition, Pearson Education.
- 2. William M. Newmann & Robert F. Sproull, Principles of Interactive Computer Graphics, Tata McGraw-Hill Second Edition, New Delhi, India.
- 3. Zhigang Xiang & Roy A Plastock, Computer Graphics, Second Edition, Schaum's Outline, Tata McGraw Hill Education Private Limited, New Delhi, India.

Reference Book

1. Foley, van Dam, Feiner, and Hughes. Computer Graphics: Principles and Practice, 3rd edition in C.

CSE-415N	Object Oriented Software Engineering								
Lecture	Tutorial	Practical	Major Test	Minor Test	Total	Time			
3	0	0	75	25	100	3 Hrs.			
Purpose	To provide the thorough knowledge to use the concepts and their design attributes for Object Oriented Software Engineering approaches and platforms to solve real time problems.								
Course Outcomes (CO)									
CO1	To learn th	he basic con	cepts of objec	t oriented systems	and software	engineering.			
CO2	To get ex and desig	posure of v ning softwar	arious object e based syste	modeling method ms using UML.	ologies, tools	for analyzing			
CO3	To explore problems using Use Cases, analyzing relations, responsibilities and collaborations among classes and their behavior in problem domain.								
CO4	To evalua interfaces	te object orio	ented design p d communicati	rocesses using mo on mechanisms fo	odels, design p r performing re	oatterns, equired tasks.			

Unit - I

An Overview of Object-Oriented system Development, Objects Basis, Class Hierarchy, Inheritance, Polymorphism, Object Relationships and Associations, Aggregations and Object Containment, Object Persistence, Meta-Classes, Object Oriented Systems Development Life Cycle: Software Development Process, Object Oriented Systems Development: A Use-Case Driven Approach.

Unit - II

Object Oriented Methodologies:Rumbaugh Methodology, Jacobson Methodology, BoochMethodology, Patterns, Frameworks, The Unified approach, Unified Modeling Language (UML)

Unit - III

Object Oriented Analysis Process, Use Case Driven Object Oriented Analysis, Use Case Model, Object Analysis: Classification, Classification Theory, Approaches for identifying classes, Responsibilities and Collaborators, Identifying Object Relationships, Attributes and Methods: Associations, Super-Sub Class relationships, A-Part-of-Relationships-Aggregation, Class Responsibilities, Object Responsibilities.

Unit - IV

Object Oriented Design process and Design Axioms, Corollaries, Design Patterns, Designing Classes: Object Oriented Design Philosophy, UML Object Constraint Language, Designing Classes: The Process, Class Visibility, Refining Attributes, Designing Methods and Protocols, Packages and Managing classes, View Layer: Designing Interface objects, Designing View layer Classes, Macro and Micro Level Interface Design Process.

Text Books:

- 1. Ali Bahrami, Object Oriented Systems Development, McGraw Hill Publishing Company Limited, New Delhi, 2013.
- 2. Rumbaugh *et al.*, Object Oriented Modeling and Design, PHI, 2006.
- 3. Robert Laganière and Timothy C. Lethbridge, Object-Oriented Software Engineering: Practical Software Development, McGraw-Hill Publishing Company Limited, New Delhi, Sixth Print 2008.

- 1. Ivar Jacobson, MagnosChristerson, Patrick Jonsson, Gunnar Overgaard, Object-oriented Software Engineering: A Use Case Driven Approach, Pearson Education, New Delhi, Seventh Edition Reprint, 2009.
- 2. David C. Kung, Object-Oriented Software Engineering: An Agile Unified Methodology, McGraw-Hill Publishing Company Limited, New Delhi, 2013.
- 3. Bernd Bruegge, Allen H. Dutoit, Object-Oriented Software Engineering Using UML, Patterns, and Java: Pearson New International, Third Edition, 2013.

CSE-417N	Cyber Security								
Lecture	Tutorial Practical Major Test Minor Test Total					Time			
3	0	0	75	25	100	3 Hrs.			
Purpose	To gain a broad understanding in order to get predictive ways out related to cyber								
	security.								
			Course Ou	Itcomes					
CO1	To facilitat	e the basic k	nowledge of cy	/ber security.					
CO2	To explore and sort issues related to different types of activities in cyber crime.								
CO3	To get enable to fix the various cyber attacks.								
CO4	To deal wi	th the digital	forensics and r	elated scenaric	s of cyber crin	nes.			

Unit-I

Introduction: Introduction and Overview of Cyber Crime, Nature and Scope of Cyber Crime, Types of Cyber Crime: crime against individual,Crime against property, Cyber extortion, Drug trafficking, cyber terrorism.

Need for Information security, Threats to Information Systems, Information Assurance, Cyber Security, and Security Risk Analysis.

Unit-II

Cyber Crime Issues: Unauthorized Access to Computers, Computer Intrusions, Viruses and Malicious Code, Internet Hacking and Cracking, Virus and worms, Software Piracy, Intellectual Property, Mail Bombs, Exploitation, Stalking and Obscenity in Internet, Password Cracking, Steganography, Key loggers and Spyware, Trojan and backdoors, phishing, DOS and DDOS attack, SQL injection, Buffer Overflow.

Unit-III

Introduction to cyber attacks: passive attacks, active attacks, Cyber crime prevention methods, Application security (Database, E-mail and Internet), Data Security Considerations-Backups, Archival Storage and Disposal of Data, Security Technology-Firewall and VPNs, Intrusion Detection, Access Control, Hardware protection mechanisms, OS Security

Unit-IV

Digital Forensics: Introduction to Digital Forensics, historical background of digital forensics, Forensic Software and Hardware, need for computer forensics science, special tools and techniques digital forensic life cycle, challenges in digital forensic.

Law Perspective: Introduction to the Legal Perspectives of Cybercrimes and Cyber security, Cybercrime and the Legal Landscape around the World, Why Do We Need Cyber laws, The Indian IT Act, Cybercrime Scenario in India, Digital Signatures and the Indian IT Act, Cybercrime and Punishment.

Text Books:

1. Nelson Phillips and Enfinger Steuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009.

- 1. Robert M Slade," Software Forensics", Tata McGraw Hill, New Delhi, 2005.
- 2. Sunit Belapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley India Pvt. Ltd.

CSE-419N	Cryptography and Information Security							
Lecture	Tutorial	Practical	Major Test	Minor Test	Total	Time		
3	0	0	75	25	100	3 Hrs.		
Purpose	The cour	se will be	useful for	students who	plan to do I	research/product		
	development/analysis in areas related to secure computing in their career.							
Course Outcomes (CO)								
CO1	To learn b	asics of net	work security	and cryptograph	у.			
CO2	Exposing	the knowle	dge about net	twork authentica	ation mechanis	sm, with security		
	algorithms.							
CO3	To explore the knowledge of key exchange protocols.							
CO4	To realize	the effect o	n digitized sec	curity.				

Unit I: Basics of Cryptography

Introduction to cryptography, security threats, types of cryptography, Classical cryptography and their cryptanalysis, perfect secrecy, Shannon's theorem, stream ciphers, Security attacks

Unit II: Authentication Mechanism and Security Algorithms

Access control mechanism, Discretionary v/s mandatory access control, CPA-secure encryption, Pseudorandom permutations, practical block ciphers (3-DES, AES), RSA, modes of operation, MACs, Hash functions-Tiger Hash, Gear hash, pseudorandom generators, Public key infrastructure.

Unit III: Key Exchange Protocols

CCA-secure encryption, Diffie-Hellman key exchange, Public key crypto systems (El Gamal, Paillier, Rabin, Goldwasser-Micali), Key exchange protocols, example protocol such as PGP, Kerberos, IPSEC/VPN, SSL, S/MIME etc., PKCSv1.5.

Unit IV: Digitized Security

Digital signatures,-MD5, SHA1, Rabin Finger Print, digital certificates, DSS, firewall and intrusion detection systems, Byzantine agreement, secure multiparty computation, interactive proof systems

Text Books:

- 1. Y. Lindell and J. Katz. Introduction to Modern Cryptography. MIT press, 2012.
- 2. OedGoldreich. Foundations of Modern cryptography: Parts I and II, Cambridge Press, 2011.
- 3. A. Menezes, P.C. Van Oorschot and S.A. Vanstone. Handbook of Applied Cryptography, CRC Press, 2010.
- 4. William Stalling, Cryptography and Network Security: Pearson Education, 2013.

- 1. Michael EWhitman& Herbert J. Mattord, Principles of Information Security, Vikash Publishing House PVT. LTD., New Delhi, 2015.
- 2. Charles P. Pfleeger, Security in Computing, 4th Edition, Prentice Hall, 2011.
- 3. Jeff Crume, Inside Internet Security Addison Wesley, 2014.

CSE-421N	Agile Software Engineering								
Lecture	Tutorial Practical Major Test Minor Test Total								
3	0	0	75	25	100	3 Hrs.			
Purpose	Introduce	Introduces the business value of adopting Agile approaches and provide							
complete understanding of the Agile development practices									
Course Outcomes (CO)									
CO1	Understan	d the back	ground and dri	ving forces for	taking an Agi	le approach to			
	software d	evelopment.		-					
CO2	Understan	d the busine	ss value of ado	pting Agile appr	oaches.				
CO3	Drive development with unit tests using Test Driven Development.								
CO4	Apply desi	gn principles	and refactoring	g to achieve Agi	lity.				

Unit I: Fundamentals of Agile

The Genesis of Agile, Introduction and background, Agile Manifesto and Principles, Overview of Scrum, Extreme Programming, Feature Driven development, Lean Software Development, Agile project management, Design and development practices in Agile projects, Test Driven Development, Continuous Integration, Refactoring, Pair Programming, Simple Design, User Stories, Agile Testing, Agile Tools

Unit II: Agile Scrum Framework

Introduction to Scrum, Project phases, Agile Estimation, Planning game, Product backlog, Sprint backlog, Iteration planning, User story definition, Characteristics and content of user stories, Acceptance tests and Verifying stories, Project velocity, Burn down chart, Sprint planning and retrospective, Daily scrum, Scrum roles – Product Owner, Scrum Master, Scrum Team, Scrum case study, Tools for Agile project management.

Unit III: Agile Testing

The Agile lifecycle and its impact on testing, Test-Driven Development (TDD), xUnit framework and tools for TDD, Testing user stories - acceptance tests and scenarios, Planning and managing testing cycle, Exploratory testing, Risk based testing, Regression tests, Test Automation, Tools to support the Agile tester.

Unit IV: Agile Software Design and Development

Agile design practices, Role of design Principles including Single Responsibility Principle, Open Closed Principle, Liskov Substitution Principle, Interface Segregation Principles, Dependency Inversion Principle in Agile Design, Need and significance of Refactoring, Refactoring Techniques, Continuous Integration, Automated build tools, Version control.

Text Books:

- 1. Ken Schawber, Mike Beedle, *Agile Software Development with Scrum*, Pearson publications.
- 2. Robert C. Martin, *Agile Software Development, Principles, Patterns and Practices*, Prentice Hall.
- 3. Lisa Crispin, Janet Gregory, *Agile Testing: A Practical Guide for Testers and Agile Teams*, Addison Wesley.

- 1. Alistair Cockburn, *Agile Software Development: The Cooperative Game*, Addison Wesley.
- 2. Mike Cohn, User Stories Applied: For Agile Software, Addison Wesley.

CSE-423N		Big Data and Analytics								
Lecture	Tutorial	Practical	Major Test	Minor Test	Total	Time				
3	0	0	75	25	100	3 Hrs.				
Purpose	To provid	To provide knowledge of Big Data Analytics and Distributed File Systems.								
Course Outcomes (CO)										
CO1	To learn ir	n details the o	concepts of big	data.						
CO2	Expose th	e criteria of b	oig data analytic	s and big data s	torage.					
CO3	To explore	e knowledge	of big data com	pression technic	lues.					
CO4	To exploi	To explore learning of big data tools and state-of-the-art knowledge with								
	implement	tation for big	data.							

Unit I: Big Data Background

Big data definition and features of big data, big data value, development of big data, challenges of big data, NoSQL databases, technologies related to big data including cloud computing, Internet of Things, data center, Hadoop, relationship between IoT and big data, relationship between hadoop and big data, big data generation and acquisition includes data collection, data transmission, data pre-processing, big data applications.

Unit II: Big Data Analytics and Storage

Big data analysis, big data analytic methods and tools, Pig, Hive, Flume, Mahout, Big data storage, distributed storage system for massive data, storage mechanism for big data GFS, HDFS, HBase, MongoDB, Cassandra, big data storage deduplication techniques, fixed-size and variable-size blocks based deduplication, content defined chunking, frequency based chunking, byte and multibyte indexing techniques, Cloud storage.

Unit III: Big Data Compression

Big data delta compression, Xdelta implementation, Message Digest (MD5), Secure Hash Algorithm (SHA-1/SHA-256), Gear Hash, Tiger Hash, Rabin and Incremental Secure Fingerprint based deduplication, lossless duplicate and similar data elimination approaches, Parallel deduplication and compression using PCOMPRESS, Scalable Decentralized Deduplication Store (SDDS) using Cassandra.

Unit IV: Big Data Processing

Installation procedure with system requirements for Apache Hadoop, Cassandra, Spark, Pig, Hive, HBase, MongoDB large scale distributed storage systems, Map Reduce programming model working, YARN architecture, Apache Pig and Hive architecture, Single node and Multi-nodes Hadoop Cluster Set up and running a Big Data example, NoSQL implementation.

Text Books:

- "Big Data" by Viktor Mayer-Schönberger, Kenneth Cukier, ISBN:978-0544002692, Eamon 1. Dolan/Houghton Mifflin Harcourt 2013.
- "Big Data Now", by O'Reilly Media Inc., ASIN: B0097E4EBQ, O'Reilly 2012. 2.
- "Hadoop Operation", by Eric Sammer, ISBN: 978-1449327057, O'Reilly 2012. 3.
- "MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop and 4 Other Systems", by Donald Miner, Adam Shook, ISBN:978-1449327170, O'Reilly 2012.

- 1. "Programming Hive", by Edward Capriolo, ISBN: 978-1449319335,O'Reilly 2012.
- 2. "HBase: the Definitive Guide", by Lars George, ISBN: 978-1449396107, O'Reilly 2011.
- "Mahout in Action", by Sean Owen, Robin Anil, Ted Dunning, Ellen Friedman, ISBN: 3. 978-1935182689, Manning 2011.
- 4. "Programming Pig", by Alan Gates, ISBN: 978-1449302641, O'Reilly 2011.
- "Cassandra, the Definitive Guide", by Eben Hewitt ISBN: 978-1449390419 O'Reilly 2011. 5.
- "MongoDB: The Definitive Guide" by Kristina Chodorow, Michael Dirolf, ISBN: 978-6. 1449381561, O'Reilly, 2010.

CSE-425N	Expert Systems							
Lecture	Tutorial Practical Major Test Minor Test Total Time							
3	0	0	75	25	100	3 Hrs.		
	In this c	ourse the	student will lea	arn the methodo	logies used	to transfer the		
Purpose	knowledge of a human expert into an intelligent program that can be used to solve							
	real-time problems.							
Course Outcomes(CO)								
CO1	Examinin	g the funda	mentals and terr	ninologies of expe	ert system.			
CO2	To facilitate students to implement various knowledge representation techniques for							
002	acquisition and validate various structures in experts system domain.							
CO3	Signifying	I AI techniqu	ues to solve soc	ial, industrial and	environmenta	al problems.		
CO4	Application of professional aspects in multi-disciplinary approach to meet global							
604	standards	s towards de	esign, realizing a	and manufacturing	I.			

Unit-I

Introduction to AI programming languages, Blind search strategies, Breadth first – Depth first – Heuristic search techniques Hill Climbing – Best first – A Algorithms AO* algorithm – game tress, Min-max algorithms, game playing – Alpha beta pruning.

Knowledge representation issues predicate logic – logic programming Semantic nets- frames and inheritance, constraint propagation; Representing Knowledge using rules, Rules based deduction systems.

Unit-II

Introduction to Expert Systems, Architecture of expert system, Representation and organization of knowledge, Basics characteristics, and types of problems handled by expert systems.

Expert System Tools: Techniques of knowledge representations in expert systems, knowledge engineering, System-building aids, support facilities, stages in the development of expert systems.

Unit-III

Building an Expert System: Expert system development, Selection of tool, Acquiring Knowledge, Building process.

Unit-IV

Problems with Expert Systems: Difficulties, common pitfalls in planning, dealing with domain expert, difficulties during development.

Text Books

- 1. Elain Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw-Hill, New Delhi, 2008.
- 2. Waterman D.A., "A Guide to Expert Systems", Addison Wesley Longman, 1985.

- 1. Staurt Russel and other Peter Norvig, "Artificial Intelligence A Modern Approach", Prentice Hall, 1995.
- 2. Patrick Henry Winston, "Artificial Intelligence", Addison Wesley, 1979.
- 3. Patterson, Artificial Intelligence & Expert System, Prentice Hall India, 1999.
- 4. Hayes-Roth, Lenat and Waterman: Building Expert Systems, Addison Wesley, 1983.
- 5. Weiss S.M. and Kulikowski C.A., "A Practical Guide to Designing Expert Systems", Rowman & Allanheld, New Jersey, 2011.

CSE-405N	Computer Graphics Lab								
Lecture	Tutorial Practical Minor Test Practical Total Time								
0	0	2	40	60	100	3Hrs.			
Purpose	To Design and implement various Line and Circle Drawing Algorithms.								
Course Outcomes (CO)									
CO1	To Impler	nent basic al	gorithms relate	d to Line & Circl	e Drawing.				
CO2	Implemen	it various Lin	e & Circle Draw	ing Algorithms.					
CO3	Hands on experiments on 2-D transformations.								
CO4	Conceptual implementation of Clipping and other drawing algorithms.								

List of Practicals

- 1. Write a program to implement DDA line drawing algorithm.
- 2. Write a program to implement Bresenham's line drawing algorithm.
- 3. Implement the Bresenham's circle drawing algorithm.
- 4. Write a program to draw a decagon whose all vertices are connected with every other vertex using lines.
- 5. Write a program to move an object using the concepts of 2-D transformations.
- 6. Write a program to implement the midpoint circle drawing algorithmany Object Oriented Programming Languagelike Python, C++, Java.
- 7. Implement the line clipping algorithm using any Object Oriented Programming Language like Python, C++, Java.
- 8. Implement boundary fill algorithm using any Object Oriented Programming Language like Python, C++, Java.
- 9. Implement the depth buffer algorithm using any Object oriented language like Python, C++,Java.
- 10. Perform the Polygon Clipping Algorithm using any Object oriented language like Python, C++,Java.
- 11. Draw a Rectangle using Bresenham's and DDA Algorithm using any Object oriented language like Python, C++, Java.

Note: At least 5 to 10 more exercises are to be given by the teacher concerned.

CSE-409N	Unix & Linux Programming Lab								
Lecture	Tutorial	Practical	Minor Test	Practical	Total	Time			
0	0	2	40	60	100	3 Hrs.			
Purpose	pose To provide experimental knowledge of Unix & Linux Programs								
Course Outcomes (CO)									
CO	Exploring knowledge by implementation of programs using UNIX/LINUX.								

List of Practicals

- 1. Familiarize with Unix/Linux logging/logout and simple commands.
- 2. Familiarize with vi editor.
- 3. Using Bash shell develop simple shell programs.
- 4. Develop advanced shell programs using grep, fgrep&egrep.
- Compile and debug various C programs using different options.
 Content defined chunking, frequency based chunking, delta/Xdelta, Rabin Fingerprint Generator, Parallel Compression pcompress.
- 6. Learning of installation and upgradation of Linux operating system.
- 7. Install Linux on a PC having some other previously installed operating system. All operating systems should be usable.
- 8. As supervisor create and maintain user accounts, learn package installation, taking backups, creation of scripts for file and user management, creation of startup and shutdown scripts using at, cron etc.

Note: At least 5 to 10 more exercises are to be given by the teacher concerned.