Lesson Plan

Name of Institute	: Ambala College of Engineering and Applied Research
Name of the Faculty member	: Er. Ajay Kumar
Discipline	: Mechanical Engineering
Semester	$: 4^{th}$
Subject	: Applied Thermodynamics
Lesson Plan Duration	: 15 weeks (from January 2020 to April 2020)
Work Load	: L-3 T-1

	Theory	
Week	Lecture day	Topic (including assignment/ test)
1 st	1 st	Introduction; classification of boilers; comparison of fire tube and water tube boiler; their advantages;
	2^{nd}	Description of boiler; Lancashire; locomotive
	3 rd	Description of boiler Babcock and Wilcox
	Tutorial	Revision of discussed Topics
2 nd	1 st	Boiler mountings; stop valve; safety valve; blow off valve; feed check etc
	2^{nd}	Boiler mountings; water level indicator; fusible plug; pressure gauge
	3 rd	Boiler accessories; feed pump; feed water heater;.
	Tutorial	Class Test on Boiler Mountings
3 rd	1 st	Boiler accessories; Air preheater; super heater; economizer;
	2 nd	Natural draught chimney design
	3 rd	artificial draught; stream jet draught; mechanical draught
	Tutorial	Revision of discussed Topics
4 th	1 st	Calculation of boiler efficiency and equivalent evaporation
	2 nd	Carnot cycle with Numerical problem
	3 rd	Simple Rankine cycle with Numerical problem
	Tutorial	Numerical Problems & Assignment -1
5 th	1^{st}	Modified Rankine cycle with Numerical problem
	2^{nd}	Effect of operating parameters on rankine cycle performance; effect of superheating; effect of maximum pressure
	3 rd	Effect of exhaust pressure; reheating
	Tutorial	Class Test – 1 (Syllabus will be notified)
6 th	1 st	Regenerative Rankine cycle
	2^{nd}	Numerical Problems related to regenerative rankine cycle
	3 rd	Types of feed water heater; reheat factor
	Tutorial	Numerical Problems
7 th	1 st	Binary vapour cycle.
	2^{nd}	Simple steam engine and its various component
	3 rd	Compound steam engine and its various component
	Tutorial	Numerical Problems
8 th	1 st	Function of steam nozzle; shape of nozzle for subsonics and supersonics flow of stream;
	2 nd	Variation of velocity; area of specific volume; steady state energy equation; continuity equation

	3 rd	Nozzle efficiency; critical pressure ratio for maximum discharge;
		physical explanation of critical pressure;
	Tutorial	Numerical Problems & Assignment -2
9 th	1 st	Numerical problems on steam nozzle
	2 nd	Super saturated flow of steam; design of steam nozzle. Advantage of steam condensation
	3 rd	Numerical problems on design of nozzle
	Tutorial	Numerical Problems
10 th	1 st	Numerical problems on steam nozzle
	2 nd	Super saturated flow of steam; design of steam nozzle. Advantage of steam condensation
	$3^{\rm rd}$	Numerical problems on design of nozzle
	Tutorial	Class Test – 1 (Syllabus will be notified)
11 th	1 st	Introduction; classification of steam turbine
	2^{nd}	Impulse turbine; working principal;; velocity diagram;
	3 rd	Compounding of impulse turbine
	Tutorial	Numerical Problems
12 th	1 st	Calculation of power output of a single stage impulse turbine
	2^{nd}	Calculation of efficiency; maximum efficiency of a single stage impulse turbine
	3 rd	Numerical problem on output and efficiency of impulse turbine
	Tutorial	Numerical Problems & Assignment -3
13 th	1 st	Design of impulse turbine blade section
	2^{nd}	Impulse reaction turbine; working principle
	3 rd	Degree of reaction
	Tutorial	Numerical Problems
14 th	1 st	Numerical on impulse reaction turbine
	2^{nd}	Parsons turbine; velocity diagram
	3 rd	Calculation of power output;
	Tutorial	Numerical Problems
15 th	1 st	Efficiency of blade height
	2^{nd}	Numerical on power output, maximum efficiency
	3 rd	Internal losses in steam turbine; governing of steam turbine.
	Tutorial	Numerical Problems & Assignment -4

(Signature of the teacher concerned with date)