Lesson Plan

Name of Institute : Amba	ala College of Engineering and Applied Research, Devsthali.				
Name of the Faculty member: Mr. Ajay Singh					
Discipline	: Applied Sciences and Humanities				
Semester	: 2 nd				
Subject	: Applied Physics BS-111A				
Applied Physics Lab BS-113 LA					
Lesson Plan Duration	: 15 weeks (from January 2020-April, 2020)				
Work Load	: L-3, T-1, P-3				

	Theory		Practical	
Week	Lectu re day	Topic (including assignment/ test)	Practi cal day	Торіс
1 st	1 st	Interference: Principle of Superposition, Conditions for interference	1 st	1)To verify Newton's formula and hence to find the focal
	2 nd	Division of wave-front: Fresnel's Biprism and Applications,		lens.
	3 rd	Division of amplitude: Wedge-shaped film,		
2 nd	4 th	Newton's rings	2 nd	2)To find the frequency of A.C. mains by using Sonometer and horse shoe magnet
	5 th	Michelson Interferometer and Applications		
	6 th	Diffraction: Types of diffraction, Fraunhofer diffraction at a single slit		
3 rd	7 th	Plane transmission diffraction grating: theory,	3 rd	3)To find the resistance of a
	8 th	secondary maxima and minima, width of principal maxima		box
	9 th	absent spectra, overlapping of spectral lines, determination of wavelength		
4 th	10 th	Dispersive power and resolving power of diffraction grating.	4 th	4)To convert a galvanometer into an ammeter of desired
	11 th	Revision of 1 st unit		
	12 th	Polarization: Polarization of transverse waves, Plane of polarization, Polarization by reflection		

5 th	13 th	Double refraction, Nicol Prism,	5 th	Viva Voce
	14 th	Quarter and half wave plate		
	15 th	Specific Rotation, Laurent 's half shade polarimeter		
6 th	16 th	Biquartzpolarimeter.	6 th	5) To find the wavelength of monochromatic light by
	17 th	Laser: Introduction, Stimulated Absorption, Spontaneous and Stimulated Emission		Newton's ring experiment
	18 th	Einstein's Coefficients and its derivation,		
7 th	19 th	Population Inversion, Direct and Indirect pumping, Pumping schemes, Main components of Laser,	7 th	6)To find the wavelength of sodium light by Michelson's interferometer
	20 th	He-Ne Laser,		
	21 st	Semiconductor Laser, Characteristics of Laser, Applications of Laser.		
8 th	22 nd	Revision of 2 nd unit	8 th	7)To find the resolving power of telescope
	23 rd	Optical Fiber: Introduction, Principle of propagation of light waves in optical fibers: total internal reflection		
	24 th	acceptance angle, numerical aperture, V- number;		
9 th	25 th	Modes of propagation, Types of optical fibers: single mode fiber, multimode fibers	9 th	8) To find the wavelength of sodium light using Fresnel bi-
	26 th	Fiber optics communication system		phom
	27 th	Advantages of optical fiber communication, Applications of optical fibers.		
10 th	28 th	Ultrasonics: Ultrasonic waves, Properties of ultrasonic waves	10 th	Viva Voce
	29 th	Production of ultrasonic waves: Magnetostriction		
	30 th	Piezoelectric methods		
11 th	31 st	Detection of ultrasonic waves	11 th	9)To find the wavelength of
	32 nd	Measurement of velocity of ultrasonic waves, Applications of ultrasonic waves.		with the help of plane transmission diffraction
	33 rd	Revision of 3 rd unit		graung
12 th	34 th	Nuclear radiations and its Biological Effects: Classification of nuclear radiations	12 th	10) To find the specific rotation of sugar solution by

	35 th	Interaction of charged particle (light and heavy)		using a Polarimeter.
	36 th	gamma radiations with matter (basic concepts),		
13 th	37 th	Dosimetric units, Relative Biological Effectiveness (RBE)	13 th	Viva Voce
	38 th	Typical doses from commons sources in the environment		
	39 th	Biological Effects		
14 th	40 th	Maximum Permissible Dose(MPD)	14 th	Internal Viva
	41 st	Shielding, Radiation safety in the nuclear radiation laboratory		
	42 nd	Biomaterials: Introduction Classification of biomaterials	•	
15 th	43 rd	Applications.	15 th	Doubts/Revision
	44 th	Revision of 4 th unit		
	45 th	Revision/ Doubts		

Mr Ajay Singh

Assistant Professor

APS Department

ACE