Bachelor of Technology (Electronics & Communication Engineering) Scheme of Studies/Examination Semester VII

S.No.	CourseNo.	Subject	L:T:P	Hours/Week	k Examination Schedule(Marks)			(s)	Duration of
					Theory	Sessionals	Practical	Total	Exam(Hrs)
1	ECE-401N	Microcontroller & Embedded Systems Design	3:0:0	3	75	25	0	100	3
2	ECE-403N	Digital Image Processing	4:0:0	4	75	25	0	100	3
3	ECE-405N	Power Electronics		3	75	25	0	100	3
4		Core Elective -I**	3:0:0	3	75	25	0	100	3
5		Core Elective -II**	3:0:0	3	75	25	0	100	3
6	ECE-407N	N Microcontroller & Embedded Systems Design Lab		3	0	40	60	100	3
7	ECE-409N	Digital Image Processing Lab	0:0:3	3	0	40	60	100	3
8	ECE- 411N***	Project-1	0:0:10	10	0	100	100	200	3
9	ECE- 413N*	Industrial Training Viva	2:0:0	2	0	100	0	100	
		Total		34	375	405	220	1000	

*The performance of the student will be evaluated by the technical training (undertaken after 6th semester) seminar and the report submitted by the student which should also include the Industrial/Research problems faced & suggested solutions.

** The students should select two departmental electives subjects from the list of core elective subjects.

***Theprojectshouldbeinitiatedbythestudentinthe7thsemesterbeginningandwillbeevaluatedintheendofthesemesteronthebasisof a presentation and report submitted to the department.

Bachelor of Technology(Electronics &Communication Engineering) Scheme of Studies/Examination SemesterVIII

S.No.	CourseNo.	Subject	L:T:P	Hours/Week	Exa	amination Sc	hedule(Marks)		Duration of Exam(Hrs)
					Theory	Sessionals	Practical	Total	
1	ECE-402N	Wireless & Mobile Communication	4:0:0	4	75	25	0	100	3
2	ECE- 404N	Microwave Engineering	3:0:0	3	75	25	0	100	3
3		Core Elective -III**	3:0:0	3	75	25	0	100	3
4		Core Elective -IV**	3:0:0	3	75	25	0	100	3
5	ECE- 406N***	Project-II	0:0:14	14	0	100	100	200	3
6	ECE-408N	Wireless & Mobile communication lab	0:0:3	3	0	40	60	100	3
7	ECE-410N	Microwave Engineering Lab	0:0:3	3	0	40	60	100	3
8	ECE-412N*	Seminar & Report Writing	2:0:0	2	0	100	0	100	3
		Total		35	300	380	220	900	
9	ECE- 440N****	General Fitness &Professional Aptitude						100	3

* The performance of the student will be evaluated by the presentation delivered and the report submitted by the student related to Industrial/Research problems & it s suggested solutions.

** The students should opt two departmental electives subjects from the list of core elective subjects.

***The project should be initiated by the student in continuation of the7thsemester and will be evaluated in the end of the semester on the basis of a presentation and Report.

****A viva of the students will be taken by external examiner (Principal/Director/Professor/or any senior Person with Experience more than10 years) at the end of the semester and grades will be given according to the grade chart.

S. No.		Core Electives-7thSem.	S. No.		Core Electives-8thSem.
1	ECE-415N	Advance DigitalCommunication	1	ECE-414N	DSPProcessor
2	ECE-417N	NanoElectronics	2	ECE-416N	Mobile CommunicationNetworks
3	ECE-419N	OpticalCommunications	3	ECE-418N	MEMS
4	ECE-421N	AdaptiveSignalProcessing	4	ECE-420N	Transducers&ItsApplications
5	ECE-423N	Satellite Communication	5	ECE-422N	RadarEngineering
6	ECE-425N	DigitalVLSIDesign	6	ECE-424N	High Frequency Circuit andSystems
7	ECE-427N	AnalogCMOS ICDesign	7	ECE-426N	Biomedical Signal Processing
8	ECE-429N	ConsumerElectronics	8	ECE-428N	Multimedia Communications
9	ECE-431N	Robotics	9	ECE-430N	MixedVLSIDesign
10	ECE-433N	Non-ConventionalEnergyResources	10	ECE-432N	MicrostripAntenna
11	ECE-435N	Microstrip lineAnalysis	11	ECE-434N	Strategic Electronics
12	ECE-437N	SoftwareDefined Radios	12	ECE-436N	Cognitive Radios

ECE-401N		MICROCO	ONTROLLER A	NDEMBEDDEDSYS	TEMDESIGN	N
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time

Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time				
3	0	0	75	25	100	3Hr.				
Pre-requisites: Microprocessor										
CourseOutcomes										
CO1	CO1 Acquired knowledge about the architecture of microcontrollers.									
CO2	Acquired kn language.	owledge abo	out instruction s	set and programmir	ig concepts in (C and assembly				
CO3	CO3 To understand peripheral interfacing to microcontrollers.									
CO4	To design the systems /models based on microcontrollers									

Unit- I

INTRODUTION: Microprocessor and Microcontroller, Different types of Microcontrollers, 4 bit, 8 bit, 16 bit, and 32 bit Microcontrollers, Processor Architectures: Harvard & Princeton, CISC & RISC, Microcontrollers memory types, Microcontrollers features, Criteria for choosing a microcontroller, Applications of microcontrollers.

Embedded System, Embedded Processors, Hardware units, Devices and Software in a system, Embedded system on chip, Complex Systems design and processors, Design examples.

Unit- II

8051 ARCHITECTURE: 8051 Architecture, On-chip memory organization – general purpose registers, SFR registers, Internal RAM and ROM, Oscillator and Clock circuits. Pin Diagram of 8051, I/O Pins, Port, Connecting external memory, Counters and Timers, Purpose of TCON & TMOD registers, Serial data transmission/reception and transmission modes, Purpose of SCON & PCON registers, Different Types of Interrupts, Purpose of Time Delays.

Unit- III

8051 INSTRUCTION SET AND PROGRAMMING : Instruction syntax, Assembler directives, Addressing modes, Data transfer instructions, arithmetic and logical instructions, Jump and Call instructions, I/O port, Timer and Counter programming, Serial port and Interrupt programming.

PIC MICROCONTROLLER ARCHITECTURE: Introduction to PIC Microcontroller families, Different features of PIC16 Microcontrollers, PIC16 Architecture and Pipelining, Pin Configuration of PIC16, Program memory considerations, Register file structure, Addressing modes, Instruction set.

Unit-IV

APPLICATION DESIGN & HARDWARE INTERFACING WITH 8051: Interfacing Matrix Keyboards, LCD, ADC, DAC, Temperature Sensor, Stepper and DC motor, Relay and PWM. Introduction of Advanced Microcontrollers: AVR and ARM microcontrollers. Text Books:

- 1. Kenneth Ayala," The 8051 Microcontroller" 3rd ed. CENGAGE Learning.
- 2. M.A. Mazidi, J.G. Mazidi, R. D. McKinlay," The 8051 Microcontroller and Embedded systems using assembly and C" -2nd Ed, Pearson Education.
- 3. John. B. Peatman, "Design with PIC Microcontroller", Pearson Education, 2003.

References Books:

- 1. MykePredko, "Programming and Customizing the 8051 Microcontroller", TMH.
- 2. Manish K Patel,"Microcontroller based embedded system", McGraw Hill Education.
- 3. Raj Kamal, "Embedded systems architecture, programming and design"-2ndnd. McGraw-Hill Companies.
- 4. Intel's manual on "Embedded Microcontrollers".
- 5. MykePredko, "Programming and customizing PIC microcontroller" Mc- Graw Hill.

- 6. M.A. Mazidi, R. D. McKinlay, Causey," The PIC microcontroller and Embedded Systems using assembly and C for PIC18" -2nd Ed, Pearson.
- M.A. Mazidi, Naimi" The AVR microcontroller and Embedded Systems using assembly and C" -2nd Ed, Pearson.

ECE-	DIGITAL IMAGE PROCESSING									
403N										
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time				
4	0	0	75	25	100	3 Hr.				
CourseOutcomes										
CO1	Students sho	Students should be able to explain the basics of Digital Image processing								
CO2	Student will	be able to exp	plain sampling	g and quantization of a	ligital image					
CO3	Student will be able to analyze the image enhancement operations on digital image									
CO4	Students wil	l be able to an	alyze the vari	ous image analysis and	l computer vision	algorithm				

Unit-I

Introduction: Processing and applications, Image representation and modeling, Image Enhancement, Restoration, analysis, reconstruction from Projections, Image Data Compression. Image Perception: Light, Luminance, Brightness, Contrast, MFT of visual System, Visibility Function, Image fidelity, Color representation, color matching and reproduction, color vision Model

Unit-II

Image sampling and Quantization: Introduction, Two dimensional sampling theory, practical limitations in sampling and reconstruction, Image quantization, Optimum mean square or Lloyd-Max quantizer.

Unit-III

Image Enhancement: Introduction, Point Operation, Histogram Modeling, Spatial Operations, Transform Operations, Multispectral Image enhancement, Color Image enhancement.

Unit-IV

Image Analysis and Computer Vision: Introduction, Spatial Feature Extraction, Transform features, Edge Detection, Boundary Extraction, Shape features, Image segmentation.

Text Books:

- 1. Digital Image Processing, third edition by Rafael C. Gonzalez and Richard E Woods. Publisher: Pearson Education.
- 2. Digital Image Processing by S. Sridhar, Publisher: Oxford

Reference Books:

1. Fundamentals of Digital Image Processing by Anil K Jain, Publisher: Prentice Hall

ECE-405N	POWER ELECTRONICS									
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time				
3	0	0	75	25	100	3 Hr.				
Purpose	To understand and acquire knowledge about various power semiconductor devices. To prepare the students to analyze and design different power converter circuits.									
		С	ourse Outcon	nes						
CO1	Acquire knowle electronics.	edge about fu	ndamental cor	ncepts and techniqu	es used in po	wer				
CO2	Ability to analy understand the	vze various si ir application	ngle phase an s.	d three phase powe	er converter o	circuits and				
CO3	Foster ability to identify basic requirements for power electronics based design application.									
CO4	To develop skil	ls to build, an	d troubleshoo	t power electronics	circuits.					

Unit-1

Introduction: Concept of Power Electronics, Applications of power electronics, Advantages and disadvantages of power-electronic converters, Power electronic systems, Power semiconductor devices, Types of power electronic converters. Power semiconductors: The p-n junction, Basic structure of power diodes, Characteristics of power diodes, Power transistors, Power MOSFETS, Insulated gate bipolar transistor, Static induction transistor.

Unit-II

Thyristors :Terminal characteristics of thyristors, thyristor turn on methods, Switching characteristics of thyristors, Thyristor gate characteristics, Two-transistor model of a thyristor, Thyristor ratings, Thyristor protection, Improvement of thyristor characteristics, Series and parallel operation of thyristors, Gate turn off thyristor, Firing circuits for thyristors.

Thyristor Commutation: Class A commutation: Load commutation, Class B commutation: Resonant commutation, Class C commutation: Complementary commutation, Class D commutation: Impulse commutation, Class E&F commutation.

Unit-III

Phase Controlled Rectifiers: Principle of phase control, Full wave controlled converters, Single phase full wave converters, Single phase symmetrical and asymmetrical semi converters, three phase rectifiers and thyristor converters, Performance parameters of three phase full converters, Effect of source impedance on the performance of converters. Principle of chopper operation, Control strategies, Step up choppers, Types of chopper circuits, Single phase voltage source inverters: Operating principle, Force commutated thyristor inverters, Voltage control in single phase inverters.

Unit-IV

AC Voltage Controllers: Principle of phase control, Principle of integral cycle control, single phase ac voltage controller with R load and RL load.

Cycloconverters: Principle of cycloconverter operation, step up and step down cycloconverters, Three phase half wave converters, Output voltage equation for a cycloconverter, Load commutated cycloconverter.

Text Books

1. P S Bimbhra: Power Electronics, Khanna Publishers.

Reference Books

1. M. H. Rashid. : Power Electronics – circuits, devices & applications, Pearson Education.

ECE-407N	MICROCONTROLLERANDEMBEDDEDSYSTEMDESIGN LAB									
Lecture	TutorialPracticalSessionalsPracticalTotalTime									
0	0 3 40 60 100 3									
Course Objectives	1. To a	1. To design of microcontroller based systems.								
	2. To impart practical knowledge of 8051 and PIC Microcontrollers									
		Cou	rseOutcomes							
CO1	To familiar	ization with 80)51 and PIC Mic	rocontrollers.						
CO2	Ability to w	Ability to write a C language and assembly language program for 8051 Microcontroller.								
CO3	Ability to interfacing the various Peripheral to 8051 Microcontrollers.									
CO4	Ability to de	esign the embe	edded systems ba	sed on 8051 Micro	ocontrollers.					

List of experiments to be performed using 8051 Microcontrollers

1. (a) To study different commands of 8051 trainer kit with their function.

(b) To study architectural block and pin diagram of 8051 microcontroller and PIC16C74 microcontroller.

- 2. To write an ALP to perform addition, subtraction, multiplication and division of two unsigned numbers.
- 3. To write an ALP to perform logical operation i.e., AND, OR, XOR and Complement of two unsigned numbers.
- 4. To write an ALP to perform multi byte addition and subtraction of two unsigned number.
- 5. To write an ALP to perform rotate operations i.e., RL, RLC, RR, RRC.
- 6. To write an ALP for flashing message "WELCOME M51-02 KIT" on LCD screen.
- To write an ALP for identifying pressed number is even or odd. If number is even, message displays on LCD "NUMBER IS EVEN" and if number is odd, message displays on LCD "NUMBER IS ODD".
- 8. To write an ALP to perform data transfer between internal & external memory using all available addressing modes.
- 9. To write an embedded C program for interfacing LCD to port P0 and display message "LCD Display" on LCD screen.
- 10. To write an embedded C program for interfacing keypad to port P0 .Whenever a key is pressed; it should be displayed on LCD.
- 11. To write an embedded C program for interfacing a switch and a buzzer to two different pins of a Port such that the buzzer should sound as long as the switch is pressed.
- 12. To write an embedded C program for interfacing stepper motor to rotate clockwise and anticlockwise directions.
- 13. To write an embedded C program for interfacing relay and buzzer.
- 14. To write an embedded C program for interfacing PWM module to control speed of motor.
- 15. To write an embedded C program for interfacing LED to glow in different pattern i.e., even odd, rotate left, rotate right.
- 16. To write an embedded C program for interfacing temperature sensor.
- 17. Design an Obstacle Detector system through Ultra Sonic obstacle detection using ultrasonic transmitter receiver.

ECE- 409N	DIGITAL IMAGE PROCESSING LAB										
Lecture	Tutorial Practical		Sessionals	Practical	ctical Total						
-	-	3	40	60	100	3 Hr.					
CourseOutcomes											
CO1	Students she	Students should be able to explain the basics of Digital Image processing									
CO2	Student will	be able to ex	plain sampling d	end quantization of	digital image						
CO3	Student will be able to analyze the image enhancement operations on digital image										
CO4	Students will algorithm	ll be able to a	nalyze the variou	s image analysis ar	nd computer vis	sion					

List of Experiments:

- 1. Study of Image processing toolbox of Matlab.
- 2. WAP to read and show various images of at least five different formats.
- 3. WAP to extract R, G, B component of Color Image.
- 4. WAP to convert a color image into gray scale and save it in new format.
- 5. WAP to invert a gray scale image.
- 6. WAP to implement Morphological operations on an image.
- 7. WAP to implement Histogram equalization.
- 8. WAP to implement various edge detection algorithms.
- 9. WAP to implement image segmentation
- 10. WAP to implement boundary extraction of basic structure.

ECE-402N WIRELESS&MOBILECOMMUNICATION										
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time				
4	0	0	75	25	100	3				
Purpose	Tointroduce the concepts of wireless/mobile communication using cellular environment. To make the estudents to know about the various modulation techniques, ppropagation methods, and multiaccess techniques used in the mobile communication.									
Course Outcomes										
CO1	It deals with the fundamental cellular radio concepts such as frequency reuse and hand off.									
CO2	Thisalsodemonstratestheprincipleoftrunkingefficiencyandhowtrunkingandinterferenceissuesb etweenmobileandbasestationscombinetoaffecttheoverallcapacity of cellularsystems.									
CO3	$\label{eq:linear} It provides idea about analog and digital modulation technique sused in wireless communication.$									
CO4	Itpresentsdi <u>f</u> propagation	ferentwaystor in manyoperd	adiopropagation utingenvironmen	nmodelsandpredictth t.	elarge–scalee <u>f</u>	fects ofradio				

Unit–I

IntroductiontoWirelessCommunicationSystems:Evolutionofmobileradiocommunications,exampl esof wirelesscomm.systems,pagingsystems,Cordless

telephone systems, comparison of various wireless systems.

 $\label{eq:modernWirelessCommunicationSystems} : Second generation cellular networks, third generation wireless so that the system of the sys$

Unit–II

 $\label{eq:constraint} Introduction to Cellular Mobile Systems: Spectrum Allocation, basic Cellular Systems, performance Criteria, Operation of cellular systems, analog cellular systems, digital Cellular Systems.$

CellularSystemDesignFundamentals:FrequencyReuse,channelassignmentstrategies,handoffStrategies,Interferenceandsystemcapacity,trackingandgrade off service, improvingcoverage and capacity.

Unit– III

MultipleAccess Techniques for Wireless Communication: Introduction to the second sec

MultipleAccess,FDMA,TDMA,SpreadSpectrummultipleAccess,spacedivisionmultipleaccess, packetratio,capacity of a cellular systems.

Unit-IV

WirelessStandards-GSM,IS-95,UMTS-IMT-2000,Signaling,CallControl,MobilityManagement and locationTracing.

Suggested Books:

- 1. TheodoreS.Reppaport,WirelessCommunicationsPrinciples and Practice,IEEEPress,PrenticeHall.
- 2. WilliamC.Y.Lec,MobileCellularTelecommunications,AnalogandDigitalSystems,Mc-Graw Hill Inc.
- 3. KamiloFeher,WirelessDigitalCommunications,Modernization&SpreadSpectrumApplications, PrenticeHall of India,New Delhi.
- 4. KavehPahlavanandAllenH.Levesque"WirelessInformationNetworks",WileySeries, JohnWiley and Sons Inc.

ECE-404N		Ν	IICROWAV	E ENGINEERIN	G				
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time			
3	0	0	75	25	100	3 Hrs			
Purpose	AsapartofRFcommunicationtechnologythepurposeofthiscourseistocreateawarenessaboutc onventionalmicrowaveresonators, generators, components and devices along with the importance of scattering parameters so that the learner is able to design and apply these basic approaches incommercial as well as								
	CourseOutcomes								
CO1	Learnerwill emicrowave	lbeabletomat parameterss	hematicallyd uchasimpedd	esignbasicresonate ince _s frequencyand	orcavitiesandwi VSWRetc.	llbeabletomeasur			
CO2	Learnerwill	l learnthe co	nventional m	ethods to generate	the microwaves	5.			
CO3	Learnerwillknowabouttheimportanceofscatteringparametersalongwithitsapplications in the analysis of basic microwavecomponents.								
CO4	Learnerwill	llearnabouttr	ansferredele	ctronandavalanch	etransittimedevi	icesindetail.			

Unit-I

MicrowaveResonators:

Briefdescriptionofwaveguides,coplanarwaveguides,cavityresonators:rectangular,cylindrical,sphericalan dcoaxial,excitationandcouplingofcavities,Qfactor.MicrowaveMeasurements:MeasurementofFrequency, Impedance(usingslottedsection)attenuation,power,dielectricconstant,measurement of V.S.W.R.,insertion loss andpermeability

Unit-II

MicrowaveGenerators:

 $Construction, characteristics, operating principle and typical applications of Klystron (two cavity, multicavity), Reflex Klystron, magnetron (Cylindrical magnetron and description of \Pi mode applications) and Traveling Wave Tube (TWT).$

Unit-III

MatrixDescriptionofMicrowaveCircuits:ScatteringMatrix:properties,measurementofscatteringcoefficients,scatteringmatricesforcommonmicrow
avesystems.MicrowaveComponents:Waveguidetees-E-plane,H-plane,magictee,ratrace,directionalcoupler,tuningscrewsandstubs,isolatorsandcirculators-theirconstructionalfeaturesandapplications.Microwavefilters,Phaseshifters,attenuators,andfrequencymet
er.er.

Unit-IV

SolidStateMicrowaveDevices:TransferredElectronDevices-GunnEffect;negativedifferentialresistancephenomenon,fielddomainformation,Gunndiodestructure.Avalanchetransittimedevices:IMPATT,TRAPATT,BARITT diodes,Parametricamplifiers

Text Book:

1. Samuel Y. Liao, Microwave Engineering, Pearson Education 3rd/4th/ higher Ed.

Reference Books:

- 2. Annapurna&SisirK.Das,MicrowaveEngineering,TataMcGraw-Hill.
- 3. David M. Pozar, Microwave Engineering, John Wiley and Sons Inc.

ECE-408N WIRELESS&MOBILECOMMUNICATIONLAB										
Lecture	Tutorial	Practical	Sessionals	Practical	Total	Time				
-		3	40	60	100	3Hour				
Purpose	$\label{eq:constraint} To give the students an idea about the Wireless communication theory and technology using the N I-Labviews of tware and RF communication module.$									
			Course O	utcomes						
CO1	Tostudy the	wirelesscomn	nunication usi	ng NI-Labvie	?W					
CO2	Tolearn abo	outthefunction	ning of Univer	sal Software	Radio Periph	neral (USRP)				
CO3	Tolearntheimplementationof different analog modulations chemes using the USRP.									
CO4	Tolearnthei	mplementatio	onofdifferent d	igital modula	tionschemes	using the USRP.				

List of Experiments:

- 1. Introduction NI-LabVIEW and familiarization with its basic functions.
- 2. Study of modulationtoolkit andits usage in WirelessCommunication.
- 3. Study the interfacing of hardware(USRPmodule)with the PCand configuring the same.
- 4. Implementation of AM using SoftwareDefinedRadio(SDR).
- 5. Implementation of FM using SDR withapplication such as transfer of files
- 6. Implementation of M-PSK transmitter using SDR concept.
- 7. Implementation of M-PSK receiverusingSDR
- 8. Implementation of M-QAMtransmitter using SDR.
- 9. Demonstrates the use of theBluetoothfunctionsto set up data transfervia Bluetoothbetween a

serverVI and a clientVI.

- 10. Designtwo-dimensional convolution to performimage edge detection.
- 11. Implementation of M-QAMreceiver using SDR.
- 12. Implementation of PSKModulationsystemwithConvolutionalCoding.
- 13. Implementation of FSKModulationsystemwithBCHCoding.
- 14. Implementation of QAMModulationsystemwithGolayCoding

ECE-410N	MICROWAVE ENGINEERING LAB								
Lecture	Tutorial	FutorialPracticalSessionalsPracticalTotalTime							
-		3	40	60	100	3Hour			
Purpose	Togive the students and eabout the study and analysis of components used in Microwave Engg.								
			Course Out	tcomes					
CO1	Students wi	ll learn the si	teps to analyze m	icrowave compo	nents.				
CO2	Students wi	ll be able to f	find the characte	ristics of microw	ave component	s.			
CO3	Students wi	Students will learn the steps to analyze various antennas.							
CO4	Students wi	ll be able to f	find the characte	ristics of various	antennas.				

List of Experiments:

- 1. To study microwave components.
- 2. To study the characteristics of the reflex Klystron tube and to determine its electronic tuning range.
- 3. To determine the frequency and wavelength in a rectangular waveguide working in TE $_{10}$ mode.
- 4. To determine the standing wave ratio and reflection coefficient.
- 5. To study the I-V characteristics of gunn diode.
- 6. To study the magic Tee.
- 7. To study the isolator and attenuator.
- 8. To measure the coupling coefficient and directivity of a waveguide directional coupler.
- 9. To measure the polar pattern and the gain of a waveguide horn antenna.
- 10. To measure the insertion loss and attenuation.

	1									
ECE-415N	Advance Digital Communication									
Lecture	Tutorial	Tutorial Practical Theory Sessionals Total Time								
4	0	0	75	25	100	3 Hr.				
Purpose	To understan	nd and acquir	e knowledge	about various powe	er semicondu	ctor devices.				
	To prepare the	he students to	analyze and d	lesign different pow	er converter c	ircuits.				
Course Outcomes										
CO1	Acquire know communicati	wledge about j ions	fundamental c	concepts and technic	ques used in a	ligital				
CO2	Ability to analyze various techniques of communication and understand their applications.									
CO3	Foster ability design applic	y to identify b cation.	asic requirem	ents for power digi	tal communic	cation based				
CO4	To develop s	kills to build, d	and troublesh	oot on digital comm	unication cire	cuits				

Unit-I

Probability and Stochastic Processes: Probability: Random Variables, Probability Distribution, and Probability Densities, Functions of Random Variables, Statistical Average of Random Variables, Some Useful Probability Distributions, Upper Bounds on the Tail Probability, Sums of Random Variables and Central Limit Theorem.Stochastic Processes: Statistical Averages, Power Density Spectrum, Response of a Linear Time - Invariant System to a Random Input Signal, Sampling Theorem for Band- Limited Stochastic Processes, Discrete-time Stochastic Signals and Systems, Cyclostationary processes.

Unit -II

Source coding:Mathematical Models for Information Sources, A Logarithmic Measure of information: Average Mutual Information and Entropy, Information Measure for Continuous Random Variables. Coding for Discrete Sources: Coding for Discrete Memory less sources, Discrete Stationary Sources, The Lempel-Ziv Algorithm.Coding for Analog Sources-Optimum Quantization: Rate- Distortion Function, Scalar Quantization, Vector Quantization. Coding Techniques for Analog Sources: Temporal Waveform Coding, Spectral Waveform Coding, Model- Based Source Coding.

Unit -III

Characterization of Communication Signal and Systems: Signal Space Representation: Vector Space Concept, Signal Space Concept, Orthogonal Expansion of Signals, Gram Schmitt Procedure.

Optimum Receivers for the Additive White Gaussian Noise Channel: Performance of the Optimum Receiver for Memory Less Modulation: Probability of Error for Binary Modulation, Probability of Error for M- ary Orthogonal Signals, Probability of Error for M- ary Binary- Coded Signals, Probability of Error for M- ary PAM, Optimum Receiver for Binary Signals.

Unit -1V

Carrier and Symbol Synchronization:Signal Parameter Estimation: The Likelihood Function, Carrier Recovery and Symbol Synchronization in Signal Demodulation.Carrier Phase Estimation: Maximum Likelihood Carrier Phase Estimation, The Phased – Locked Loop, Effect of Additive Noise on the Phase Estimate, Decision Directed Loops, Non- Decision Directed Loops.

Text Book:*Digital Communication*, J.G. Proakis, Prentice Hall India. Reference Book: *Principles of Communication Systems*, Taub& Schilling,McGraw Hill Education; 3rd.

ECE-417N		NANO ELECTRONICS								
Lecture	Tutorial	utorial Practical Theory Sessionals Total Time								
4	0	0	75	25	100	3Hour				
Course Outcomes										
CO1 Studentswillbeusingphysics, mathematics, and materials cience engineering to understand the latest development in the area of Microelectronics leading to Nanoelectronics.										
CO2	Students be able to understand the fundamental sofclassical CMOS technology and issues in scaling MOSFET in the sub-100 nm regime									
CO3	Understand classicaltra	lingbasicprin nsistorswithn	ciplesofnon- iewdevicestruc	tureandnanomater	ials.					
CO4	$\label{eq:cond} Understand the issues in realizing Germanium and compound semiconductor MOSFET.$									
CO5	Studentswi	lllearnmateri	alscharacterize	utiontechniquesexte	ensively.					

Unit-I

Overview:Nanodevices,Nanomaterials,DefinitionofTechnologynode,BasicCMOSProcessflow,MOS Scalingtheory,Issuesinscaling,Shortchanneleffects,Descriptionofatypical65nmCMOStechnology,Req uirementsforNonclassicalMOStransistor,MOScapacitor,Roleofinterfacequalityandrelatedprocesstech niques,Gateoxidethicknessscalingtrend,SiO2vsHigh-kgatedielectrics.Integrationissuesofhigh-k,Interfacestates,bulkcharge,bandoffset,stability,etc.

Unit-II

 $\label{eq:metalGateTransistor:} Motivation, requirements, IntegrationIssues, TransportinNanoMOSFET, velocity ysaturation, ballistic transport, injection velocity, velocity overshoot, SOI-$

PDSOIandFDSOI., UltrathinbodySOI-doublegatetransistors, Vertical transistors-

FinFETandSurroundgateFET,Metalsource/drainjunctions-

Properties of schotky junctions on Silicon, Germanium and compound semiconductors-

Work function pinning, Germanium NanoMOSFETs: strain, quantization, Advantages of Germanium over Silicon.

Unit-III

PMOSversusNMOS, Compoundsemiconductors-

material properties, MESFETs Compound semicocnductors MOSFETs in the context of channel quantization nandstrain, Heterostructure MOSFETs exploiting novel materials, strain, quantization.

 $\label{eq:synthesis of Nanomaterials: CVD, Nucleation and Growth, ALD, Epitaxy, MBE. Compound semiconduc to rhetero-$

structuregrowth, emerging nanomaterials: Nanotubes, nanorods and other nanostructures, LB technique, S of the other of the other oth

Unit-IV

Characterization: Quantum wells and Thickness measurement techniques: Contact-stepheight, Optical-reflectance and ellipsometry, AFM, Nanomaterials Characterization techniques: FTIR, XRD, AFM, SEM, TEM, EDAX and interpretation of results.

Books:

1.

FundamentalsofModernVLSIDevices,Y.TaurandT.Ning,CambridgeUniversityPress.Silic onVLSITechnology,Plummer,Deal,Griffin,PearsonEducationIndia.

2.

EncyclopediaofMaterialsCharacterization,Editedby:Brundle,C.Richard;Evans,CharlesA.Jr.;Wilson,S haun;Elsevier.

ECE - 419N	OPTICAL COMMUNICATION									
Lecture	Tutorial	TutorialPracticalTheorySessionalsTotalTime								
3	0	0	75	25	100	3 Hr.				
Purpose	To familia	To familiarize the students with the concepts of Optical communication covering thecontents of								
	optical fibers, losses in fibers, optical sources, detectors etc.									
	Course Outcomes									
CO1	Students wi	ll be able to u	understand the st	ructure of fiber and	l the mechani	sm of light travelling in the				
	fiber.									
	0									
CO2	Students wi	ll be able to a	inalyze various le	osses associated wi	th fibers.					
CO3	Students wi	ill learn about	t the optical sour	ces and optical det	ecters.					
			-	-						
CO4	Students wi	ll be able to u	understand the va	irious components	needed in opt	ical networks				

Unit – I

INTRODUCTION : Optical Fibers: Structure, Propagation within the fiber, Numerical aperture of fiber, step index and graded index fiber, Modes of propagation in the fiber, Single mode and multi mode fibers. Splices and connectors. Optical Power Launching and Coupling. Fiber-to-fiber joints.

Unit–II

LOSSES IN OPTICAL FIBER : Rayleigh Scattering Losses, Absorption Losses, Leaky modes, Mode coupling losses, Bending Losses, Combined Losses in the fiber.

DISPERSION EFFECT: Effect of dispersion on the pulse transmission Intermodal dispersion, Material dispersion, Wave guide dispersion, Polarization Mode Dispersion Total dispersion, Transmission rate. Dispersion Shifted Fibers, Dispersion Compensating Fibers.

Unit – III

LIGHT SOURCES : LEDS, Laser Action in semiconductor Lasers, Semiconductor Lasers for optical communication – Laser modes, Spectral Characteristics, Power Voltage Characteristics, Frequency response.

DETECTORS : P-I-N Photodiode, APD, Noise Analysis in detectors, Coherent and non-coherent detection, Infrared sensors. Bit error rate.

Unit– IV

THE FIBER-OPTIC COMMUNICATION SYSTEM: Design considerations of fiber optic systems: Analog and digital modulation. Optical Devices: Optical coupler, space switches, linear dividercombiners, wavelength

division multiplexer and demultiplexer, optical amplifier

OPTICAL NETWORKS: Elements and Architecture of Fiber-Optic Network, Optical link networksingle hop ,multihop, hybrid and photonic networks.

Suggested Books:

1. John Power, An Introduction to Fiber optic systems, McGraw Hill International.

2. John Gowar, Optical communication Systems.

3. R. Ramaswamy, Optical Networks, Narosa Publication

4. John M. Senior, Optical Fiber Communication

5. Gerd Keiser, Optical Fiber Communication

ECE -		ADAPTIVE SIGNAL PROCESSING								
421N										
Lecture	Tutorial Practical Theory Sessionals Total Time									
3	0	0	75	25	100	3 Hr.				
Purpose	To familia	rize the stud	ents with vario	us stochastic proc	esses and i	models, analysis of wiener				
	filters, steepest descent algorithms. Also, students will be able to understand LMS & RLS									
	algorithms and check the robustness and study the Finite-Precision effects on LMS and RLS									
	algorithms.									
			Cours	e Outcomes						
CO1	To underst	and various s	stochastic proce.	sses and models in	adaptive si	gnal processing.				
CO2	To underst	tand the ana	lysis of wiener j	filters, the concept	of the line	ear prediction and steepest				
	descent alg	gorithms.								
CO3	To underst	tand the con	cept and use of	^c Least-Mean-Squa	re (LMS)	& Recursive Least-Squares				
	(RLS) algo	rithms with a	pplications to sp	pecific engineering	problems.	-				
CO4	To apply a	the concept	robustness and	analysis the Finit	e-Precision	effects on LMS and RLS				
	algorithms			-						

Unit -I

Stochastic Processes and Models: Partial Characterization of a Discrete-Time Stochastic Process, Mean Ergodic Theorem, Correlation Matrix, Correlation Matrix of Sine Wave Plus Noise, Stochastic Models, Wold Decomposition, Asymptotic Stationarity of an Autoregressive Process, Yule—Walker Equations.

Wiener Filters: Linear Optimum Filtering: Statement of the Problem, Principle of Orthogonality, Minimum Mean-Square Error, Wiener-Hopf Equations, Error-Performance Surface, Multiple Linear Regression Model.

Unit -II

Linear Prediction: Forward Linear Prediction, Backward Linear Prediction, Levinson-Durbin Algorithm, Properties of Prediction-Error Filters, Schur-Cohn Test.

Method of Steepest Descent: Basic Idea of the Steepest-Descent Algorithm, The Steepest-Descent Algorithm Applied to the Wiener Filter, Stability of the Steepest-Descent Algorithm, Example, The Steepest-Descent Algorithm as a Deterministic Search Method, Virtue and Limitation of the Steepest-Descent Algorithm.

Unit -III

The Least-Mean-Square (LMS) Algorithm: Signal-Flow Graph, Optimality Considerations, Applications, Statistical Learning Theory, Transient Behavior and Convergence Considerations, Efficiency.

The Recursive Least-Squares (RLS) Algorithm: Some Preliminaries, The Matrix Inversion Lemma, The Exponentially Weighted RLS Algorithm, Selection of the Regularization Parameter, Update Recursion for the Sum of Weighted Error Squares, Example: Single-Weight Adaptive Noise Canceller.

Unit -IV

Robustness: Robustness, Adaptation, and Disturbances, Robustness: Preliminary Considerations Rooted in $H\infty$ Optimization, Robustness of the LMS Algorithm, Robustness of the RLS Algorithm, Comparative Evaluations of the LMS and RLS Algorithms from the Perspective of Robustness.

Finite-Precision Effects: Quantization Errors, Least-Mean-Square (LMS) Algorithm, Recursive Least-Squares (RLS) Algorithm, Summary and Discussion.

TEXT BOOKS: 1. S. Haykin, Adaptive filter theory, Pearson **REFERENCE BOOKS:**

ECE-	SATELLITE COMMUNICATION									
423N										
Lecture	Tutorial	Tutorial Practical Theory Sessionals Total Time								
3	0	0	75	25	100	3 Hr.				
Purpose	To familia	rize the stude	ents with the cor	cepts of Satellite	communica	tion and various terms,				
	laws and multiple access schemes used in its working.									
Course Outcomes										
CO1	To understand the concept of basics of satellite communication and various basic laws and									
	terms of sa	tellite comm	unication.							
CO2	To unders	tand the co	ncept and proc	esses of various	communica	tion satellites used in				
	satellite co	mmunication	n.							
CO3	To familia	rize with th	e concept and	design issues of	satellite lin	k design and satellite				
	access.									
CO4	To famili	arize with	the concepts	of Multiple ac	cess schem	ies used in satellite				
	communic	ation.								

Unit-I

SATELLITE ORBITS:Orbital Mechanics- Kepler's laws ,locating the satellite in the Orbit, locating the satellite with respect to the earth, Orbital elements, look angle determination, Sub satellite point, Azimuth and elevation angle calculation, Orbital perturbations, Longitudinal and Inclination changes; Launches and launch vehicles-ELV's, Placing the satellite into geostationary orbit, Doppler shift, range variations, solar eclipse, sun transit outage.

Unit-II

COMMUNICATION SATELLITES:Satellite Subsystems, Attitude and Orbit Control system(AOCS), Telemetry, Tracking, Command and Monitoring (TTC&M), Power System, Communication Subsystems-description, Transponders, satellite antennas-basic antenna types, basic antennas in practice.

Unit-III

Satellite link design and Satellite access: Basic transmission theory, system noise temperature and G/T ratio; Downlink design-link budget; Uplink design; design for specified C/N, uplink and downlink attenuation in rain, communication link design procedure; system design examples.

Unit-IV

Multiple access schemes: FDMA, TDMA, CDMA, DAMA; VSAT systems-basic techniques, VSAT earth station engineering, system design; DBS systems-C-band and Ku band home TV, digital DBS; satellite mobile systems; GPS

Text Books:

1. Timothy Pratt, Satellite Communications, Wiley India edition

Reference Books:

1. Anil K Maini, Satellite Communication, Wiley India edition

ECE-425N	Digital VLSI Design								
Lecture	Tutorial	Tutorial Practical Theory Sessionals Total Time							
3	-	-	75	25	100	3 Hr.			
Purpose	Analog CM teaches des	OS circuits a ign methods	re used in amp of CMOS IC cir	lifiers and various cuits.	filters circuit	ts. This course			
Course Outcomes									
CO1	To understar	nd MOS digit	tal circuits conc	epts					
CO2	To understar	To understand the MOS inverter and its design							
CO3	To learn MC	OS combinatio	onal and sequen	tial circuit design					

Unit-I

Introduction: Introduction to MOSFETs : MOS Transistor Theory – Introduction MOS Device, Fabrication and Modeling , Body Effect, Noise Margin; Latch-up

Unit-II

MOS Inverter: MOS Inverter, MOS Transistors, MOS Transistor Switches, CMOS Logic, Circuit and System Representations, Design Equations, Static Load MOS Inverters, Transistor Sizing, Static and Switching Characteristics; MOS Capacitor.

Unit-III

MOS Combinational circuits: Combinational MOS Logic Circuits: Pass Transistors/Transmission Gates; Designing with transmission gates, Primitive Logic Gates; Complex Logic Circuits.

Unit-IV

MOS Sequential Circuits: Sequential MOS Logic Circuits: SR Latch, clocked Latch and flip flop circuits, CMOS D latch and edge triggered flip flop.

Books:

1. S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits : Analysis and Design, Third Edition,

MH, 2002.

 N. Weste, K. Eshraghian and M. J. S. Smith, Principles of CMOS VLSI Design : A Systems Perspective, Second Edition (Expanded), AW/Pearson, 2001.
 J. P. Uyemura, CMOS Logic Circuit Design, Kluwer, 1999.

ECE-427N	Analog CMOS IC Design									
Lecture	Tutorial	Tutorial Practical Theory Sessionals Total Time								
3	-	-	75	25	100	3 Hr.				
Purpose	Analog CM teaches des	Analog CMOS circuits are used in amplifiers and various filters circuits. This course teaches design methods of CMOS IC circuits.								
Course Objectives										
CO1	To understar	nd CMOS di	igital circuits c	concepts						
CO2	To design Aı	To design Analog circuits using CMOS.								
CO3	To learn mo	deling of CN	10S based am	plifiers circuits						

Unit-I

Basic Analog CMOS Circuits: Introduction to analog design, Passive and active current mirrors, Switched Capacitor circuits - basic principles, sampling switches, switched capacitor integrator, switched capacitor amplifier.

Unit-II

CMOS single stage Amplifiers: Common-Source stage with resistive load and diode connected load, source follower, common-gate stage, cascode stage, folded cascode stage. Frequency responses of CS stage, CD stage, CG stage, cascode stage.

Unit-III

Differential Amplifier & Op-Amp: Single-ended and differential operation, basic differential pair – qualitative and quantitative analyses, common-mode response, differential pair with MOS loads, Performance parameters of op-amp, one stage op-amp, two-stage CMOS op-amp, slew rate, power supply rejection.

Unit-IV

Oscillators: General considerations, Ring oscillators, LC oscillators – cross-coupled oscillators, Colpitts oscillator, One-port oscillator, and voltage controlled oscillators.

Books:

1.Razavi, "Design of analog CMOS integrated circuits", McGraw Hill, Edition 2002.

2. Allen, Holberg, "CMOS analog circuit design", Oxford UniversityPress, 2nd Edition, 2012.

ECE- 429N	CONSUMERELECTRONICS								
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time			
3	0	0	75	25	100	3Hr.			
Purpose	Tofamilian vancedele	TofamiliarizethestudentswiththeconceptsofaudioandvideosystemsandalsoWithvariousad vancedelectronicgadgetsandhomeappliances							
			CourseOutc	omes					
CO1	Tounderst	tandtheconcep	otofbasicaudiosys	stemandAM/FMtune	ers.				
CO2	Tounders	tandtheconcep	otofVideoSystems	5.					
CO3	Tounders	tandthevarious	sadvancedelectro	onicgadgets.					
CO4	Tounders	tandthevarious	selectronichome	appliances.					

Unit-I

AudioSystem: Wavemotion, Microphones, Headphones and Headsets, Loudspeakers, Acoustics, Discrecording and Distortion indiscand tape, Optical recording and reproduction, Control circuits, Amplifying systems, Port ablestereo, Theat resound system and AM/FM tuners.

Unit-II

 $\label{eq:videoSystems} VideoSystems, Monochrome TV standards and systems, Colour TV standards and systems, Monochrome and colour TV controls, VideoTaperecording and reproduction, videodisc recording and playback, Remote controls and Video systems.$

Unit-III

 $\label{eq:stems} Electronic Gadgets: Telecommunication Systems, Switching Systems, Modulation techniques, Fiber optic s, Mobile Systems, Xerography and Fascimile fax, Automated Teller Machines and Top Boxes.$

Unit-IV

HomeAppliances: Digital clocks, In-CarComputers, Microwaveovens, Washing Machines, AirConditioners and Refrigerators.

ReferenceBooks:

- 1. ConsumerElectronicsByS.P.Bali,PearsonEducation,1stedition.
- 2. Colour Television-principles&practiceR.RGulatibyWileyEasternLimited,NewDelhi.
- 3. ColourTelevision&VideoTechnologybyA.K.MainiCSBPublisher
- 4. VCR-principles, maintenance&repairbyS.P.Sharma, TataMcGrawHill, New Delhi
- 5. Colour TVbyA.Dhak.

ECE-431N	N ROBOTICS e Tutorial Practical Theory Sessionals Total Time								
Lecture									
3	0 0 75 25 100 3 Hr.								
Course Ou	tcomes			·					
CO1	The basic concepts related to robot, Parts of robots, End effectors and to make the student familiar with the various drive systems for robot.								
CO2	Various sensors	and machine visi	on and their a	pplications in rob	oots.				
CO3	About various control system, robot programming, Artificial intelligence and safety standards of robots								
CO4	Industrial and Non-industrial Applications of robots.								

Unit–I

Fundamentals of Robot: Definition, History and Development in robot technology. Robot Technology: Characteristics, Basic Components, Robot Anatomy, Robot Generations, Robot selection, Present and Future Applications.

Robot Drive Systems and End Effectors: Robot Classification: Arm geometry, Degrees of freedom, Power sources, Types of motion, Path Control. Robot End Effectors: Mechanical grippers, Vacuum, Magnetic, Adhesive. Special purpose grippers, Process tooling, Compliance, Robot Drive systems: Hydraulic, Pneumatic and Electric system.

Unit-II

Sensor : Requirements of a sensor, Sensor classification, Principles and Applications of the following types of sensors : Position of sensors (Potentiometer, Encoder, LVDT, Resolvers, LMDT, Hall – effect sensors), Velocity sensors(Encoder, Tachometer, Differentiation of position signal), Acceleration sensors, Force and Pressure Sensors(Piezoelectric, Force sensing resistor, Strain Gauge, Antistatic foam), Torque Sensors, Micro switches, Visible light and Infrared Sensors, Touch and Tactile sensors, Proximity Sensors(Magnetic, optical, Ultrasonic, Inductive, Capacitive, Eddy Current), Range Finder (Ultrasonic, Light-based, GPS), Sniff Sensors, Taste Sensors, Vision Sensors, Voice recognition devices, Voice synthesizers, RCC.

Machine Vision : Visual sensing, Architecture of robotics vision system, Machine vision: Image acquisition (Vidicon tube, CCD), Digitization, Image processing, Image Analysis, Image interpretation. Machine vision application, other optical methods.

Unit-III

Control System, Programming and Artificial Intelligence: Control Systems: PLC, PID, CNC, MPU, URC. Robot programming: Programming methods, Languages, levels of robot programming, Program statements. Elements of Artificial Intelligence, System architecture, Application of fuzzy logic in robotics, Robot Safety, safety standards.

Unit-IV

Robot Applications: Industrial applications, Automation in manufacturing, Robot applications, Material handling, Processing application, Assembly application, Inspection application, evaluating the potential of a robot application, future applications, challenge for the future, Innovations, Non-industrial application.

Text Books:

- 1. James G. Keramas, "Robot technology fundamentals", Delmar Publishers.
- 2. Saeed B. Niku, "Introduction to robotics analysis, control and applications", 2nd ed., Wiley India.
- 3. R. K. Mittal, I.J. Nagrath, "Robotics and Control", TMH Education Pvt. Lmt.

ECE-433N		NON-CONVENTIONAL ENERGY RESOURCES									
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time					
3	-	-	75	25	100	3Hour					
Course Outcomes											
CO1	Tounderstandtheenergydemandofworld,nationandavailableresourcestofulfill the demand										
CO2	Toknowabouttheconventionalenergyresourcesandtheireffectiveutilization										
CO3	Toacquireth	eknowledgeof	modernenergycoi	wersiontechnologi	ies						
CO4	Tobeabletounderstandandperformthevariouscharacterizationtechniquesoffuels										
CO5	Tobeabletoia zethemeffect	lentifyavailab tively.	lenonconventiona	l(renewable)energ	yresourcesand	techniquestoutili					

Unit-I

 $\label{eq:introduction:Energydemandofworldandcountry and gap analysis, Fossilfuel based systems, Impact of fossilfuel based systems, Nonconventional energy-seasonal variations and availability, Renewable energy-sources and features, Hybrid energy systems. Distributed energy systems and dispersed generation (DG).$

Unit-II

Solarthermalsystems:Solarradiationspectrum,Radiationmeasurement,Technologies,Applications,Heatin g,Cooling,Drying,Distillation,Powergeneration;Costing:Lifecyclecosting(LCC),Solarthermalsystem SolarPhotovoltaicsystems,Operatingprinciple,Photovoltaiccellconcepts,Cell,module,array,Seriesandparalle lconnections,Maximumpowerpointtracking,Applications,Batterycharging,Pumping,Lighting,Peltiercoolin g,Costing:Lifecyclecosting,SolarPVsystem

Unit-III

Microhydel:

Operatingprinciple, Components of a microhydel powerplant, Types and characteristics of turbines, Selection and modification, Load balancing, Costing: Lifecyclecosting-Microhydel Wind; Windpatterns and wind data, Siteselection, Types of windmills, Characteristics of windgenerators, Load matching, Lifecyclecosting-Windsystem LCC

Unit-IV

Biomass:Learningobjectives,Operatingprinciple,Combustionandfermentation,Anaerobic digester,Woodgassifier,Pyrolysis,Applications,Biogas,Woodstoves,Biodiesel,Combustionengine,Lifecycl ecosting-BiomasssystemLCC

HybridSystems, Needfor HybridSystems, Range and type of HybridSystems, Cases tudies of Diesel-PV, Wind-PV, Microhydel-PV, Biomass-Diesel systems, electric and hybrid electric vehicles

SuggestedBooks:

1. Ashok V Desai, Non-Conventional Energy, WileyEasternLtd, New Delhi, 2003

2. Mittal KM, Non-Conventional Energy Systems, Wheeler Publishing Co.Ltd, New Delhi, 20033. Ramesh

R & Kumar KU, Renewable Energy Technologies, Narosa PublishingHouse, New Delhi, 2004

4. Wakil MM, PowerPlant Technology, McGraw Hill Book Co, New Delhi, 2004.

MICROSTRIP LINE ANALYSIS

Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time			
3	-	-	75	25	100	3Hour			
Purpose To create awareness about the basics of designing the modern tuned circuit based on microstrip circuit theory.									
Course Objectives									
CO1	Tounderstandtheneed of microstripline analysis.								
CO2	To be able to	acquire know	ledgeaboutthed	dispersion models an	nd measuremen	nts.			
CO 3	To familiarize with quasi static analysis of microstrip line.								
CO 4	To acquire the knowledge of importance and applications of slotline type of microstrip								

Unit -I

Microstrip Lines I: Quasi- Static Analyses, Dispersion Models, and Measurements

Introduction, Quasi-Static Analyses of a Microstrip, Microstrip Dispersion Models, Microstrip Transitions, Microstrp Measurements.

Unit -II

Microstrip Lines II: Fullwave Analyses, Design Considerations, and Applications

Methods of Full Wave Analysis, Analysis of Open Microstrip, Analysis of Enclosed Microstrip, Design Considerations, Other Types of Microstrip Lines, Microstrip Applications.

Unit -III

Microstrip Discontinuities I: Quasi- Static Analysis and Characterization

Introduction, Discontinuity Capacitance Evaluation, Discontinuity Inductance Evaluation, Characterization of Various Discontinuities, Compensated Microstrip Discontinuities.

Unit -IV

Slotlines

Introduction, Slotline Analysis, Design Considerations, Slotline Discontinuities, Other Slotline Configurations, Slotline Transitions, Slotline Applications.

Text Book: K.C. Gupta, Ramesh Garg, InderBhal and ParkashBhartia, *Microstrip lines & Slotlines*, Second ed., Artech House, London

ECE-437N		SOFTWAREDEFINED RADIOS									
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time					
3		-	75	25	100	3					
Purpose	Tounderstand Modern RadioCommunication Systemthat can bereconfigured.										
			CourseOut	comes							
CO 1	Conceptual	ize the SDR an	d implementation	details							
CO 2	DesignSDR	for a specifica	plication								
CO 3	CO 3Identify the challenges in the maintenance of SDR										
CO 4 Analyse the transmitterandreceiver architectures											

Unit-I

Introduction-SoftwareDefinedRadio-ATraditionalHardwareRadioArchitecture-
SignalProcessingHardwareHistory-SoftwareDefinedRadioProjectComplexity.2GRadioABasicSoftwareDefinedRadioArchitecture-
ArchitecturesHybridRadioArchitecture-BasicSoftwareDefinedRadioBlockDiagram-
SystemLevelFunctioningPartitioning-DigitalFrequencyConversionPartitioning.2GRadio

Unit-II

Analog-to-DigitalandDigital-to-AnalogConversion-Introduction–DigitalConversionFundamentals-SampleRate-BandpassSampling-Oversampling-AntialiasFiltering–Quantization–ADCTechniques-SuccessiveApproximation-FigureofMerit-DACs-DACNoiseBudget-ADC Noise Budget.

Unit-III

DigitalFrequencyUp-andDownConverters-Introduction-FrequencyConverterFundamentals-DigitalNCO-DigitalMixers-DigitalFilters-HalfbandFilters-CICFiltersDecimation,Interpolation,andMultirateProcessing-DUCs-CascadingDigitalConvertersandDigitalFrequencyConverters. SignalProcessingHardwareComponents-Introduction-SDRRequirementsforProcessingPower-DSPs-DSPDevices-DSPCompilers-ReconfigurableProcessorsAdaptiveComputingMachine-FPGAs

Unit-IV

SoftwareArchitectureandComponents–Introduction-MajorSoftwareArchitectureChoices –Hardware–SpecificSoftwareArchitecture-SoftwareStandardsforSoftwareRadio-SoftwareDesignPatterns-ComponentChoices-RealTimeOperatingSystems-HighLevelSoftwareLanguages-HardwareLanguages.

TextBooks

1. PaulBurns, Software Defined Radiofor 3G, Artech House, 2002.

2. Tony J Rouphael, RF and DSP for SDR, ElsevierNewnes Press, 2008

3. JoukoVanakka, DigitalSynthesizers and TransmitterforSoftwareRadio, Springer, 2005.

4. PKenington, RF and BasebandTechniquesforSoftwareDefinedRadio, ArtechHouse, 2005.

ECE-414N		DSP PROCESSOR							
Lecture	Tutorial	torial Practical Theory Sessionals Total Time							
3	-	-	75	25	100	3Hour			

Course Objectives	 To study Programmable DSP Processors. To provide an understanding of the fundamentals of DSP techniques. To study implementation & applications of DSP techniques. To understand architecture of DSP processor To understand DSP system design using FPGA.
	Course Outcomes
CO1	To describe the detailed architecture, addressing mode, instruction sets of TMS320C5X.
CO2	To write program of DSP processor.
CO3	To describe the detailed architecture, addressing mode, instruction sets of TMS320C54X.
CO4	To know DSP system design using FPGA.

Unit-I

INTRODUCTION: Digital Signal Processing, Advantages of DSP, Applications of DSP. *Fundamentals Of Programmable Dsps*: Multiplier and Multiplier accumulator, Modified Bus Structures and Memory access in P-DSPs, Multiple access memory, Multi-ported memory, VLIW architecture, Pipelining, Special Addressing modes in P-DSPs, On chip Peripherals.

Unit-II

ARCHITECTURE OF TMS320C5X: Architecture, Bus Structure & memory, CPU, addressing modes. Programming TMS320C5X: Assembly language syntax, Assembly language Instructions, Simple ALP – Pipeline structure, Operation Block Diagram of DSP starter kit, Application Programs for processing real time signals.

Unit -III

PROGRAMMABLE DIGITAL SIGNAL PROCESSORS: Block diagrams of 54X internal Hardware, buses , internal memory organization, Data Addressing modes of S320C54XX Processors, Program Control, On-chip peripheral, Interrupts of TMS320C54XX processors, Pipeline Operation of TMS320C54XX Processors.

Unit-IV

ADVANCED PROCESSORS and FPGA:Code composer studio - Architecture of TMS320C6X, Introduction to FPGA, Design flow for an FPGA based system design, FPGA based DSP system design. Comparison of the performance of the system designed using FPGA and Digital signal processors, Application note on DSP systems.

Text- Books:

- 1. B. Venkataramani and M. Bhaskar, Digital Signal Processors -Architecture, Programming and Applications 2nd edition, Mc Graw Hills 2011.
- 2. Avtar Singh, S. Srinivasan DSP Implementation using DSP microprocessor with Examples from TMS32C54XX –Thamson.

Reference Books:

- 1. DSP Processor Fundamentals, Architectures & Features Lapsleyet al., S. Chand & Co, 2000.
- 2. Digital signal processing-Jonathen Stein John Wiley 2005.
- 3. S.K. Mitra, Digital Signal Processing, Tata McGraw-Hill Publication, 2001.
- 4. B. Venkataramani, M. Bhaskar, Digital Signal Processors, McGraw Hil

ECE-416N		MOBILE COMMUNICATIONNETWORK										
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time						
					100	_						
3		-	75	25	100	3						
Purpose	Toexposethe	To expose the students to the most recent technological developments in Mobile communication systems.										
			CourseO	utcomes								
CO 1	Fundamente	alconcepts inw	vireless,cellular	technology								
CO 2	Standardsev	olved										
CO 3	Models of m	Models of mobile radio channels										
CO 4	Communica	tiontechnolog	iesadapted, Wir	eless networks								

Unit-I

 $Introduction To Mobile Radio Systems {\it Evolution of Mobile radio communications-matrix} and {\it Communications} and {\it Communications-matrix} and {\it Commu$

MobileradiosystemsintheU.S.andaroundtheworld-

Examples of Mobileradio systems. **Standards and Cellular Concept Cellular concept**—Frequency reuse— Channel Assignment strategies—Handoff strategies—Interference and System capacity—Trunking and Grade of service – Improving capacity in cellular systems.

Unit-II

MobileRadioPropagationSmall-scalemultipathpropagation–Impulseresponseofamultipathchannel– Parametersofmobilemultipathchannel–Typesofsmall-scalefading–RayleighandRiciandistributions Statisticalmodelsformultipathfadingchannels.

Unit-III

MobileSystemandNetworkArchitecturesGSMServicesandFeatures–GSMsystemarchitecture– GSMradiosubsystem–FramestructureforGSM–SignalprocessinginGSM–GPRSnetworkarchitecture– GPRSservicesandfeatures–3GUMTSnetworkarchitecture –UMTS services and features.

Unit-IV

WirelessStandardsMultipleaccesstechniques–FDMA,TDMAandCDMA–Wirelessnetworking – Designissues in personalwirelesssystems –Cordlesssystems andWirelessLocalLoop(WLL) – IEEE802.16 FixedBroadbandWirelessAccessstandard –MobileIP andWireless ApplicationProtocol.

Text Books

1. Rappaport, T.S., "WirelessCommunications", PrinciplesandPractice, PrenticeHall, NJ, 1996.

2. WilliamStallings,"WirelessCommunicationand Networking", PearsonEducation, 2002.

3. SiegmundM.Redl,MathiasK.Weber,MalcolmW.Oliphant,"AnIntroductiontoGSM",ArtechHousePublish ers,1995.

4. Kraus, J.D., "Antennas", IIE dition, John Wileyand Sons, NY, 1977.5. Collin, R.E. and Zucker, F.,

"Antennatheory:PartI",TataMcGraw Hill,NY, 1969.

Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time					
3	-	-	75	25	100	3					
CourseOutcomes											
CO 1	Studentswillbeusingknowledgeofmathematics, science, and engineering to understand various ME										
	MSdevices.										
CO 2	Studentsbea	bletoundersta	ndvariousproce	essesusedsuchasoxi	dation,metallizati	on,fabricationand					
	packagingo	MEMSdevice	?s.								
CO 3	Understandi	ngbasicprinc	iplesofbulkmicr	romachiningandcled	anroomspractices	1					
CO 4	UnderstandmaterialsandMEMSpackagingtechniques.										
CO 5	Studentscan	<i>StudentscanwriteanengineeringreportontheoneofpotentialMEMSdevicesandgiveaneffectiveoral</i>									
	presentation	•									

Unit-I

IntroductiontoMicrosystems:

OverviewofmicroelectronicsmanufactureandMicrosystemstechnology.Definition-MEMSmaterials.Lawsofscaling.ThemultidisciplinarynatureofMEMS.Surveyofmaterialscentralto microengineering.ApplicationsofMEMSinvariousindustries.

Unit-II

MicroSensorsandActuators:WorkingprincipleofMicrosystems-

microactuationtechniques, microsensors-types, Microactuators and types, micropump, micromotors, micro-valves, microgrippers-micro-accelerometers.

Unit-III

FabricationProcessSubstrates-

singlecrystalsiliconwaferformation, Cleanroompractices, Photolithography, Ionimplantation, Diffusion, Ox idation, CVD-Physicalvapordeposition, epitaxy-etchingprocess.

Unit-IV

MicroSystemManufacturingBulkMicromanufacturing-surfacemicromachining-

LIGAMicrosystempackagingmaterials-dielevel-devicelevel-systemlevel-packagingtechniquesdiepreparation-surfacebondingwirebonding-

sealing.Introductiontoassembly,IntroductiontoMicro-system design.

TextBooks

1. MEMSandMicrosystemsDesignandManufacture"byTai-RanHsu.TataMcGraw-Hill PublishingCompanyLtd.

2. FoundationofMEMS"byChangLiu.PearsonEducation.

3. MEMSHandbook", MohamedGad-el-Hak, CRCPress, 2002.

4. Rai-

Choudhury P.MEMS and MOEMSTechnology and Applications", PHILearning Private Limited, 2009.

5. SabrieSolomon, "SensorsHandbook," McGrawHill, 1998.

References

- 1. FrancisE.H.TayandChoong.W.O, "MicrofluidicsandBiomemsapplication", IEEEPressNew York, 1997.
- 2. TrimmerWilliamS.,Ed., "MicromechanicsandMEMS", IEEEPressNewYork, 1997.

KURUKSHETRA UNIVERSITY, KURUKSHETRA Maluf,Nadim, "AnintroductiontoMicroelectromechanicalSystemsEngineering", ARTec 3. hhouse,Boston2000.

4. JulianW.Gardner, VijayK.Varadan, OsamaO.AwadelKarim, "MicrosensorsMEMSandSma rtDevices", JohnWiby&sonsLtd., 2001.

ECE- 420N	TRANSDUCERS & ITS APPLICATIONS										
Lecture	Tutorial	TutorialPracticalCreditTheorySessionalsTotalTime									
3	0	0	3	75	25	100	3 Hr.				
Purpose	Understanding the structural and functional principles of sensors and transducers used for various physical and non electric quantities and how to use them to measure										
			Course	Outcomes							
CO1	Explain the	e principles o	of operation	of the sense	or parameter	s and gener	rators.				
CO2	Interpretat	Interpretation of the measurement results by using transducers.									
CO3	Developme	Development of measurement schemes for different nonelectrical quantities.									
CO4	Assimilatin	ig knowledg	e about the t	implementat	ion of senso	rs and trans	sducers.				

Unit-I

Definition of transducer, Advantages of an electrical signal as output. Basic requirements of transducers, Primary and Secondary Transducer, Analog or digital types of transducers, Resistive, inductive, capacitive, piezoelectric, photo electric and Hall Effect tranducers

Unit-II

Measurement of Pressure: Manometers, Force summing devices and electrical transducers **Measurement of Temperature:** Metallic resistance thermometers, semi conductor resistance sensors (Thermistors), thermo-electric sensors, pyrometers

Unit-III

Measurement of Displacement–Potentiometric resistance type transducers, inductive type transducers, differential transformer (L.V.D.T), capacitive transducers, Hall effect devices, strain gage transducers

Measurement of Velocity-variable reluctance pickup, electromagnetic tachometers, photo electric tachometer, toothedrotor tachometer generator

Unit-IV

Measurement of Force: Strain gage load cells, pneumatic load cell, LVDT type force transducer **Measurement of Torque:** Torque meter, torsion meter, absorption dynamometers, inductive torque transducer, digital methods

Suggested Books:

- 1. B.C.Nakra, K.K.Chaudhry, "Instrumentation Measurement and Analysis," Tata McGraw-Hill Publishing Company Limited, NewDelhi.
- 2. Thomas G.Beckwith etc.all, "Mechanical Measurements (International Student Edition), Addison-Wesley Longman, Inc. England.
- 3. A.K.Sawhney, "A Course in Electrical and Electronic Measurements and Instrumentation," DhanpatRai&Sons,Delhi-6

ECE- 422N	RADAR ENGINEERING										
Lecture	Tutorial	TutorialPracticalCreditTheorySessionalsTotalTime									
3	0	0	3	75	25	100	3 Hr.				
Purpose	To familiarize the students with the concepts of radar, various types of radar, radar mixers and various other technologies.										
			Course	Outcomes							
C01	To underst with radar.	and the conc	ept of basic	s of radar, i	its equation a	nd signals	associated				
CO2	To underst	To understand the concept of CW and MTI radar.									
CO3	To familiar	To familiarize with the concept of tracking radar.									
CO4	To familiar	rize with the	concept of r	adar receiv	er, mixers an	d duplexers	<i>s</i> .				

Unit-I

Radar BASICS: Radar Block Diagram & operation, Applications of Radar.

Radar Equation: Simple form of Radar Equation, Detection of signals in noise, Signal to Noise ratio, Transmitter Power. Pulse repetition frequencies & range ambiguities, System losses, Propagation effects

Unit-II

CW& Frequency Modulated Radar: The Doppler Effect, CW Radar, FM-CW Radar, Multiple Frequency CW Radar

MTI & Pulse Doppler Radar: Introduction, Delay Line Cancellors, Multiple or staggered Pulse repetition frequencies, range-Gated Doppler Filters, Limitation of MTI performance, Non-coherent MTI, Pulse Doppler radar, MTI from a moving platform

Unit-III

Tracking Radar: Tracking with Radar, Sequential Lobbing, Conical Scan, Mono-pulse Tracking Radar, Tracking in range, Acquisition, Low angle tracking

Unit-IV

Receivers, Displays & Duplexers: Radar Receivers, Noise Figure, Mixer Low-noise Front ends, Displays, Duplexer, Receiver protectors

Text Book:

1. Introduction to Radar Systems: Merrill I. Skolnik,; MGH

Reference Book:

1. Electronic Communication Systems: Kennedy; TMH.

ECE-424N	HIGH FREQUENCY CIRCUITS AND SYSTEMS									
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time				
3	0 0 75 25 100 3Hr.									
Purpose	This cours for transm	se aims to in hitter and rec	ntroduce the ceiver of mo	e design of h dern commur	igh frequen tication dev	cy CMOS circuits suitable ices				
			Course	Outcomes						
CO1	To explore	e the various	s performan	ice measures	of high free	quency circuits.				
CO2	To learn th	To learn the design of high frequency filters, amplifiers and oscillators.								

Unit-I

PARAMETERS OF HIGH FREQUENCY CIRCUITS

Gain Parameters, Non-linearity parameters, Noise figure, Phase Noise, Dynamic range, RF front end performance parameters, performance trade offs in an RF circuit.

Unit-II

HIGH FREQUENCY FILTER DESIGN

Modern filter design, Frequency and impedance scaling, High Pass filter design, Band pass filter design, Band reject filter design, the effects of finite Q.

Unit- III

HIGH FREQUENCY AMPLIFIER DESIGN

Zero as bandwidth enhances, Shunt-series amplifier, Bandwidth enhancement with frequency Doublers, Tuned amplifiers, Neutralization and unilateralization, cascaded Amplifiers.

Unit-IV

MIXERS AND OSCILLATORS

Mixer fundamentals, Non linear systems as Linear mixers, multiplier based mixers, Subsampling mixers. Problems with purely linear oscillators, Tuned oscillator, Negative Resistance oscillators, frequency synthesis.

BOOKS

- 1. AleksandarTasic, Wouter.A.Serdijn, John.R.Long, "Adaptive Low Power Circuits for Wireless Communication (Analog Circuits and Signal Processing)", Springer, 1st Edition, 2006.
- Chris Bowick, "RF Circuit design", Newnes (An imprint of Elesvier Science), 1st Edition, 1997. Thomas.H. Lee, "The design of CMOS Radio-Frequency Integrated Circuits", CambridgeUniversity Press, 2nd Edition, 2004.

ECE-426N		BIO-MEDICAL SIGNAL PROCESSING										
Lecture	Tutorial	TutorialPracticalTheorySessionalsTotalTime										
3			75	25	100	3						
Purpose	Purpose Tounderstand theconcept of Bio-Medical Signal Processing.											
			CourseC	outcomes								
CO 1	Introduction	to signal and	information.									
CO 2	Introduction	to Biomedica	l Signals and E	CG.								
	Introduction to Adaptive filtering and EEG.											
CO 4	CO 4 Introduction to Event detection and waveform analysis.											

Unit – I

Signals and Information: Definitions and properties of Laplace transform, Basic of DFT and FFT, z-transform, Sampling theorem.

Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros, frequency response, group delay, phase delay, Applications of Digital Signal Processing.

Unit – II

Introduction to Biomedical Signal: General measurement and diagnostic system, classification of signals, introduction to biomedical signals, Biomedical signal acquisition and processing.

ECG: ECG signal origin, ECG parameters-QRS detection different techniques, ST segment analysis, Arrhythmia, Arrhythmia analysis, Arrhythmia monitoring system.

Unit – III

Adaptive Filtering: Introduction, General structure of adaptive filters, LMS adaptive filter, adaptive noise cancellation, cancellation of ECG from EMG signal, Cancellation of maternal ECG in fetal ECG. **EEG**: EEG signal characteristics, Sleep EEG classification and epilepsy.

Unit – IV

Event Detection and waveform analysis: Need for event detection, Detection of events & waves, Correlation analysis of EEG signals, Identification of heart sounds, Morphological analysis of ECG waves. **Frequency Domain Analysis:** Introduction, Spectral analysis, linear filtering, Removal of high frequency noise (power line interference), motion artifacts (low frequency) and power line interference in ECG.

Text Book:

1. Biomedical Signal Analysis" A case study approach, Rangaraj M Rangayyan, John Wiley publications.

Reference Books:

1. "Biomedical Signal Processing Time and Frequency Domains Analysis (Volume I)", Arnon Cohen, CRC press.

2. "Biomedical Signal Processing Principles and Techniques" D.C.Reddy, Tata Mc Graw-Hill

3. "Biomedical Digital Signal Processing", Willis J. Tompkins, PHI

ECE-428N	MULTIMEDIACOMMUNICATIONS							
Lecture	Total	Time						
3	0	0 0 75 25 100 3H						
Purpose	Tofamilia riouscom	rizethestuden pressionalgor	tswiththeconcep ithmsoftext,aud	otsofbasicmultimedia io,imageandvideo.	communication	ısystemsandva		
			CourseOu	tcomes				
CO1	Tounderstar pplications.	ndtheconcepto	ofbasicmultime	diacomm.Systemana	lvarioustypesof	fnetworksanda		
CO2	Tounderstar	ndtheconceptt	extandimageco	mpression.				
CO3	Tounderstar	ounderstandtheconceptofaudioandvideocompression.						
CO4	Tounderstar	ndtheconcepto	ofmultimediasy	nchronizationandvid	leoindexing.			

Unit - I

MultimediaCommunication:Introduction,Multimedianetworks:Telephonenetworks,Datanetworks,ISDN ,B-ISDN.MultimediaApplications:Interactiveapplicationsovertheinternetandentertainmentapplications. DigitizationPrinciples,RepresentationofText,Images,AudioandVideo.

Unit - II

TextCompression:Compressionprinciples,TextCompressiontechniques:StaticHuffmanCoding,Dynamic HuffmanCoding,ArithmeticCoding,LempelZivandLempelZivwelshcoding.

ImageCompression:Graphicsinterchangeformat,Taggedimagefileformat,JPEGindetail.

Unit - III

 $\label{eq:audioCompression:DifferentialPulseCodeModulation, AdaptiveDifferentialPCM, AdaptivePredictivecoding, Linear predictivecoding and MPEG audiocoders,$

VideoCompression: VideoCompressionprinciples, Frametypes, Motionestimation and compensation, H.261, H.263

Unit - IV

 $\label{eq:multimediaSynchronization:} Basic definitions and requirements, Timestamping and Packarchitecture.$

Video Indexing: Basics of content based image retrieval and video content representation.

ReferenceBooks:

- 1. Multimediacommunications:FredHalsall;PearsonEducationAsia.
- 2. MultimediaSystems"byRalfSteinmetzandKlaraNahrstedt
- 3. MultimediaSystems, Standards, and Networks" by A. Puriand T. Chen

ECE-430N

MIXED VLSI DESIGN

Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time				
3	0 0 75 25 100 3H									
Purpose	Purpose This course teaches how in real life applications both analog and digital circuits can implemented for various system design.									
			CourseO	utcomes						
CO1	To kno	w mixed sig	gnal circuits li	ke DAC, ADC, PLI	L etc.					
CO2	CO2 To gain knowledge on filter design in mixed signal mode.									
CO3	CO3 To acquire knowledge on design of different architectures in mixed signal									

PHASE LOCKED LOOP

Characterization of a comparator, basic CMOS comparator design, analog multiplier design, PLL - simple PLL, charge-pump PLL, applications of PLL.

Unit- II

SAMPLING CIRCUITS Basic sampling circuits for analog signal sampling, performance metrics of sampling circuits, different

types of sampling switches. Sample-and-Hold circuit with miller capacitance.

Unit- III

D/A CONVERTER

Input/output characteristics of an ideal D/A converter, performance metrics of D/A converter, D/A converter in terms of voltage, current, and charge division or multiplication, switching functions to generate an analog output corresponding to a digital input.

Unit- IV

A/D CONVERTER

Input/output characteristics and quantization error of an A/D converter, performance metrics of pipelined architectures, Successive approximation architecture.

BOOKS:

- 1. S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits : Analysis and Design, Third Edition, TMH, 2002.
- 2. Razavi, "Design of analog CMOS integrated circuits", McGraw Hill, Edition 2002.
- 3. Jacob Baker, "CMOS Mixed-Signal circuit design", IEEE Press, 2009.
- 4. Gregorian, Temes, "Analog MOS Integrated Circuit for signal processing", John Wiley & Sons, 1986.

Unit-I

	KURUKSH	IETRA UN	IVERSIT	Y, KURUKSHE	TRA			
ECE-432N	MICROSTRIP ANTENNA							
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time		
3	0	0	75	25	100	3Hr.		
Purpose	Tofamiliar	Tofamiliarize the students with the concepts of basic Antenna.						
			CourseOu	tcomes				
CO1	To understand the concept of basic Antenna. System and various types of applications.							
CO2	Tounderstandtheconcept of microstrip antenna and its analytical modeling							
CO3	To understand the different designs of microstrip antenna							
CO4	To understand the applications of different designs of microstrip antenna							

Unit-1

Micro Strip Radiator

Introduction, Microstrip Antenna Configurations, Feeding Techniques and Modeling of Microstrip Antenna, Radiation field, Surface wave and Photonic Bandgap Structures and Applications

Unit-2

Analytical Modeling and Full Wave Analysis

Introduction, Transmission Line Model, Cavity model, Radiation Fields, Aperture and Mutual admittance, conductance. Full wave analysis: Input Impedance and Radiation efficiency, Radiation pattern, Mixed Potential Integral Equation Analysis, Greens function, Finite Difference Time-Domain Analysis.

Unit-3

Rectangular and Circular Microstrip Antenna

Introduction, Models for Rectangular Patch Antennas, Design Consideration for Rectangular Patch antennas, Tolerance Analysis, Mechanical Tuning, Quarter-wave Rectangular Patch Antenna, Circular Microstrip Antenna: Analysis of Circular disk, Cavity and Transmission line modeling of circular antennas.

Unit-4

Circularly Polarized and Broadband Microstrip Antenna Design

Circular Polarization, Rectangular and Circular Circularly polarized Antennas, Power divider : T Junction and Wilkinson.

Effect of Substrate Parameter on Bandwidth, Selection of suitable Patch Shape, Feeding Techniques, MultimodingTechniques, Impedance Matching, Resistive Loading.

Textbook: Ramesh Garg, Prakash Bhartiya, InderBahl, ApisakIttipboon, "Microstrip Antenna Design Handbook", Artech House Boston, London.

	KURUKSH	ETRA UNI	VERSITY	, KURUKSHETI	XA	
ECE-434N	STRATEGIC ELECTRONICS					
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time
3	0	0	75	25	100	3Hr.
		0	CourseOutco	omes		
CO1	Studentswillbeawareofstate-oftheartinflexibleelectronics					
CO2	Students be able to understand the fundamentals of Smart Structure and Materials					
CO3	$\label{eq:understanding} Understanding basic principles of fabrication techniques used for the fabrication of fut uristic flexible electronic devices, structure, sensors and transducers.$					
CO4	$\label{eq:understand} Understand the characterization techniques used in futuri stice lectronic devices, smartmaterials, structures, etc.$					

Unit-I

Emergingflexibleelectronicstechnology, involving new materials and processing techniques such as a morphous and nanocrystallinesilicon, organic and polymerics emiconductors, solution cast films of carbon nano tubes, and graphene. Real device are discussed including high speed transistors, photovoltaics, flexible flat-panel displays, etc.

Unit – II

StrainMeasuringTechniquesusingElectricalstraingauges,Types-Resistance-

CapacitanceInductance-Wheatstonebridges-Pressuretransducers-Loadcells-

TemperatureCompensation-StrainRosettes.SensingTechnology-TypesofSensors-

PhysicalMeasurementusingPiezoElectricStrainmeasurement –InductivelyReadTransducers–

The LVOT-Fiber optic Techniques. Chemical and Bio-Chemical sensing instructural Assessment-Instructural Assessment-Instructu

Absorptivechemicalsensors-Spectroscopes-

Fibre Optic Chemical Sensing Systems and Distributed measurement.

Unit - III

Cleanroompractices, Photolithography, Ionimplantation, Diffusion, Oxidation, CVD-Physicalvapordeposition, epitaxy-etchingprocess. BulkMicromanufacturing-surfacemicromachining–LIGA, Microsystempackagingmaterials-dielevel-devicelevel-systemlevel-packagingtechniques–diepreparation–surfacebonding-wirebonding-sealing. Introduction to Micro-system design

Unit - IV

CharacterizationTechniques:QuantumwellsandThicknessmeasurementtechniques:Contactstepheight,Optical-reflectanceandellipsometry,AFM,NanomaterialsCharacterizationtechniques:IV-CVElectrochemicalImpedance,FTIR,XRD,AFM,SEM,TEM,EDAXandinterpretationofresults.

Books:

1.FlexibleElectronics:MaterialsandApplications,Editors:**Wong**,WilliamS.,**Salleo**,Alberto(Eds.)2.B rainCulshaw–SmartStructureandMaterialsArtechHouse–Borton.London-1996.

3. MEMSandMicrosystemsDesignandManufacture"byTai-RanHsu.TataMcGraw-HillPublishingCompanyLtd

4. MarcFMadou, "FundamentalsofMicroFabrication", CRCPress, 2ndEdition, 2002.

 ${\tt 5. Semiconductor} Material and Device Characterization By Dieter K. Schroder, Willey Publications$

KURUKSHETRA UNIVERSITY, KURUKSHETRA								
ECE-436N	COGNITIVERADIOS							
Lecture	Tutorial	Practical	Theory	Sessionals	Total	Time		
3		-	75	25	100	3		
Purpose	Tounderstand theconcept of CognitiveRadioand Spectrumsharing							
CourseOutcomes								
CO 1	Conceptualize the CR and implementation details							
CO 2	DesignCR for a specific application							
CO 3	Identify the challengesin the maintenance of CR							
CO 4	Analyse the transmitterandreceiver architectures							

Unit-I

 $\label{eq:result} RFSystemDesign-Introduction-NoiseandChannelCapacity-LinkBudget-ReceiverRequirements-MulticarrierPowerAmplifiers-SignalProcessingCapacityTradeoff.$

Unit-II

CRArchitecture-

CognitiveRadioArchitecture,DynamicAccessSpectrum,SpectrumEfficiency,SpectrumEfficien cygaininSDRandCR,SpectrumUsage,SDRasaplatformforCR,OFDMasPHY layer,OFDMModulator,OFDMDemodulator,OFDMBandwidth,Benefitsof OFDM in CR, SpectrumSensing in CR,CRNetwork

Unit-III

SmartAntennasUsingSoftwareRadio-Introduction-3GsmartAntennaRequirements PhasedAntennaArrayTheory-ApplyingSoftwareRadioPrinciplestoAntennaSystems SmartAntennaArchitectures-OptimumCombining/AdaptiveArrays-DOAArrays-BeamFormingforCDMA-DownlinkBeam Forming.

Unit-IV

ApplicationofSDR-ApplicationofSDRinAdvanceCommunicationSystem-CaseStudy,ChallengesandIssues,Implementation,ParameterEstimation– Environment,Location,otherfactors,VerticalHandoff,NetworkInteroperability.

TextBooks:

1. Jeffrey.H.Reed,SoftwareRadio:AModern Approach toRadioEngineering, Pearson

,ReferenceBooks:1.MarkusDillinger,KambizMadani,NancyAlonistioti,SoftwareDefinedRadio : Architectures ,Systems andFunctions,Wiley

2. Tony .J. Rouphael ,RF and DSPforSDR, Elsevier NewnessPress,2008

3. Dr.TajStruman, Evaluation of SDR – Main Document

4. SDR-

Handbook, 8 th Edition, PENTEK5. Brucea. Fette, Cognitive Radio Technology, Newness, Elsevier.