Lesson Plan

Name of the Faculty	:	Sarbjeet Singh (Theory) and Mehak Saini (Practical)
Discipline	:	Electronics and Communication Engineering
Semester	:	2 nd
Subject	:	Basic Electrical Engineering (ES-101A)
		Basic Electrical Engineering Lab (ES-103LA)
Lesson Plan Duration	:	15 weeks (from January, 2020 to April, 2020)

****Work Load (Lecture / Practical) per week (in hours) :** Lectures-04, Practical-02

		Theory	Practical	
Week	Lecture	Lecture Topic		Торіс
	Day	(including assignment / test)	Day	
1 st	1 st	Introduction to the subject		
	2 nd	Ohm's Law, junction & node		To verify KVL and KCL.
	3 rd	circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples	1 st	
	4 th	Kirchhoff's current Law and Kirchhoff's voltage law		
2 nd	5 th	Loop analysis of resistive circuit in the context of dc voltages & currents		To verify Superposition theorem on a linear circuit with at least one voltage &
	6 th	Concept of super mesh	and	
	7 th	Node-voltage analysis of resistive circuit in		
		the context of dc voltages & currents		one current source.
	8 th	Concept of super node		
3 rd	9 th	Star-Delta transformation		To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source
	10 th	Relevant D.C. circuit analytical problems for quantitative analysis	3 rd	
	11 th	Superposition thorem for DC network		
	12 th	Thevenin's theorem for DC network		
4 th	13 th	Norton's theorem for DC network		
	14 th	Maximum power transfer theorem		To verify Norton's Theorem
	15 th	Relevant D.C. circuit analytical problems for quantitative analysis based on network theorems	4 th	on a linear circuit with at least one voltage & one current source.
	16 th	Assignment-1/ Class Test		

5 th	17 th	Mathematical representation of various		
		wave functions		
	18 th	Sinusoidal periodic signal, instantaneous &		
		peak values of Sinusoidal signal		
	19 th	polar & rectangular form representation of	5 th	Viva Voce-1
		impedances & phasor quantities		
	20 th	Addition & subtraction of two or more		
		phasor sinusoidal quantities using		
		component resolution method		
6 th	21 st	RMS & average values of clipped, clamped,		To study frequency
		half wave rectified waveforms		response of a series R-L-C
	22 nd	RMS & average values of full wave		circuit on CRO and
		rectified sinusoidal periodic waveforms	6 th	resonant frequency $\& \Omega_{-}$
	23 rd	Generation of alternating emf (dynamo)		factor for various Values of
	24 th	Relevant analytical problems for		R. L. and C.
		quantitative analysis		10, 2, and 0.
7 th	25 th	Behavior of various components fed by		To study frequency
		A.C. source		response of a parallel R-L-C
	26 th	Steady state response of pure R, L and C	⊐th	circuit on CRO and
	27 th	Steady state response of RL, RC, RLC	/"	resonant frequency & Ω -
	28 th	P.F active, reactive & apparent power		Factor for various values of
				R, L, and C.
8 th	29 th	Frequency response of Series RLC circuit		
	30 th	Frequency response of Parallel		To conform O.C. and S.C.
		RLC circuit	oth	to perform O.C. and S.C.
	31 st	Relevant A.C. circuit solutions using 'j-	0	transformer
		omega' operator method.		transformer.
	32 nd	Assignment-2/ Class Test		
9 th	33 rd	Necessity, advantage and mode of		
		generation of 3 phase supply		To perform direct load test
	34 th	Phase and line voltages, currents, power		on a single phase
	35 th	Measurement of 3-phase power by two	9 th	transformer and plot
		wattmeter method for various types of star		efficiency v/s load
		& delta connected balanced loads		characteristic.
	36 th	Phase sequence significance		
10 th	37 th	Concept of magnetic circuits, Relation		
		between magnetic flux, m.m.f. and		
		reluctance		
	38 th	Hysteresis & Eddy current losses & their		
	(1	minimization	10 th	Viva Voce-2
	39 ^{un}	Principle, construction & emf		
	11	Equation in case of transformer		
	40 th	Phasor diagram for ideal case and at no		
		load, and on load conditions		

11 th	41 st	Actual transformer at resistive, inductive & capacitive loads with phasor diagrams		
42 nd		Losses, Efficiency, Regulation	11 th	To perform speed controls of DC shunt motor.
	43 rd OC& SC test, Equivalent circuit			
	44 th	concept of auto transformer		
12 th	45 th	Assignment-3/ Class Test		
	46 th	Principle, general construction & working of DC machines	1 oth	To perform starting & reversal of direction of a three phase induction motor.
	47 th	Split ring/commutator working in DC generator & motor	12	
	48 th	speed control of dc shunt motor		
13 th	49 th	Generation of rotating magnetic fields		Measurement of power in a 3 phase balanced system by two watt meter method.
	50 th	Construction and working of a three-phase induction motor	13 th	
	51 st	Significance of torque-slip characteristic		
	52 nd	Basics of Single-phase induction motor		
14 th	53 rd	capacitor start capacitor run Single-phase induction motor working		
	54 th	Basic construction and working of synchronous generator		To calibrate a single phase
	55 th	Basic construction and working of synchronous motor		energy meter.
	56 th	Switch Fuse Unit (SFU), MCB		
15 th	57 th	ELCB, MCCB		
	58 th	Types of Wires and Cables	15 th	Viva Voce-3
	59 th	Earthing		
	60 th	Assignment-4/ Class Test		

Sarbjeet Singh

Assistant Professor ECE Department

Mehak Saini

Assistant Professor ECE Department