Lesson Plan

Name of the Faculty	:	Er. Vijay Kumar Anand
Discipline	:	Electronics and Communication Engineering
Semester	:	$6^{ ext{th}}$
Subject	:	Digital Design using Verilog (ECE-304N)
		Digital Design using Verilog Lab (ECE-312N)
Lesson Plan Duration	:	15 weeks (from January, 2020 to April, 2020)

****Work Load (Lecture / Practical) per week (in hours) :** Lectures-03, Practical-03

		Theory	Practical		
Week	Lecture	Lecture Topic		Practical Experiment	
	Day	(including assignment / test)	Day		
		History of HDL, Why use HDL , Hardware design construction	1^{st}	Basic Concepts of HDL and Digital Electronics	
	2 nd	Introduction, conventional approach to digital design,		Introduction to Model Sim , XILINX Software	
	3 rd	VLSI design, ASIC design flow		1. Write a Program to	
2^{nd}	4 th	Role of HDL. Conventional Data flow, ASIC data flow	2^{nd}	implement logic gates.AND Gate	
	5 th	Verilog as HDL, Levels of Design Description, Concurrency		OR GateXOR Gate	
	6 th	Simulation and Synthesis, Functional Verification, System Tasks, Programming Language Interface (PLI), Module		 XNOR Gate NOT Gate NAND Gate NOR Gate 	
3 rd	7 th	Simulation and Synthesis Tools, Test3rdIntroductionBenches.LanguageconstructsandXILINX Softward		Introduction to Model Sim , XILINX Software 2. Write a Program to implement	
	8 th	Keywords, Identifiers, White Space Characters, Comments,		half-adder. 3. Write a Program to implement	
	9 th	Numbers, Strings, Logic Values, Strengths, Data Types,		full-adder.	
4^{th}	10 th 11 th	Scalars and Vectors, Parameters,	4^{th}		
		Memory Operators, System Tasks.			
	12 th	Assignment 1/ Class Test			
5 th	13 th	Gate level modeling: Introduction, AND Gate Primitive, Module Structure,	5 th	4. Write a Program to implement4 bit addition/subtraction.	
	14 th	Illustrative Examples, Tri-State Gates,		5. Write a Program to implement	
	15 th	Additional Examples, Design of Flip- flops with Gate Primitives		a 3:8 decoder.	
6 th	16 th	Delays, Strengths and Contention Resolution, Net Types, Design of Basic Circuits	6 th	6.Write a Program to implement an 8:1 multiplexer.	

	17 th	Behavioral modeling : Introduction, Operations and Assignments, Functional Bifurcation,		7. Write a Program to implement a 1:8 demultiplexer
	18 th	Initial Construct, Always Construct, Examples, Assignments with Delays, Wait construct,		
7 th	19 th	Multiple Always Blocks, Designs at Behavioral Level, Blocking and Non- block Assignments,	7 th	Vive Voce- 1
	20^{th}	Array of Instances of Primitives,		
	21 st	Assignment 2/ Class test		
8 th	22 nd	The case statement, Simulation Flow, if and if else constructs, assign-deassign construct,	$8^{ m th}$	8. Write a Program to implement4 bit comparator.
	23 rd	Repeat construct, for loop, the disable construct,		9. Write a Program to implement Mod-10 up counter
	24 th	Modeling at data flow level: Introduction, Continuous Assignment Structures,		
9 th	25 th	Delays and Continuous Assignments, Assignment to Vectors, Operators, Additional Examples.	9 th	10. Write a program to perform serial to parallel transfer of 4 bit binary number.
	26 th	Switch level modeling: Introduction, Basic Transistor Switches		
	27 th	CMOS Switch, Bi-directional Gates,.		
10 th	28 th 29 th	Time Delays with Switch Primitives,Instantiations with Strengths and Delays,	10^{th}	11. Write a program to perform parallel to serial transfer of 4 bit
	30 th	Strength Contention with Trireg Nets		binary number.
11 th	31 st	Functions, tasks,	11^{th}	12. Write a program to
	32 nd user defined primitives			implementa8 bit ALU containing 4 arithmetic & 4 logic operations
	33 rd	Class test		
12 th	34 th	FSM Design (Moore and Mealy Machines),	12 th	Viva voce-2
	35 th	Compiler directives Parameters, Path Delays, Module Parameters,		
	36 th	System Tasks and Functions, File-Based Tasks and Functions,		
13 th	37 th	Compiler Directives,	13 th	HDL codes for the following flip-flops, SR, D, JK, T.
	38 th	Hierarchical Access,.		
	39 th	General Observations		
14 th	40 th	System tasks, functions	14 th	HDL code for 4-bit binary, BCD
	41 st	While loop, forever loop,		counters (synchronous reset and asynchronous reset) and "any

	42 nd	Parallel blocks,		sequence" counters
15 th	43 rd	Force-release construct, Event	15^{th}	Viva Voce-3
	44 th	Revision		
	45^{th}	Revision		

(Er. Vijay Kumar Anand) Assistant Professor and Head ECE Department ACE