Lesson Plan

: Ambala College of Engineering and Applied Research Name of Institute Name of the Faculty member : Dr. Ashwani Verma (Assistant Professor) : Mechanical Engineering Discipline : 6th Semester : Design of Machine Elements (MEC-304) Subject : 15 weeks (from February 2021 to May 2021) Lesson Plan Duration T-4 Work Load : L-2 P-0

	Theory		Tutorial	
Week	Lecture day	Topic (including assignment/test)	Tutorial day	Торіс
1 st	1 st	UNIT I Introduction: Basic procedure of the design of machine elements.	1 st	Basic procedure of the design of machine elements.
	2 nd	Standards in machine design, selection of preferred sizes		Overall design considerations.
			2 nd	Standards in machine design selection of preferred sizes
2 nd	3 rd	Engineering materials, properties and selection, BIS system of designation of steels.	3 rd	Engineering materials, properties and selection
	4 th	Design against static load: Modes of failure, factor of safety and stress concentration: causes and mitigation.		BIS system of designation of steels.
			4 th	Stress concentration: causes Stress concentration: mitigation
3 rd	5 th	Design against fluctuating load: Fluctuating stresses, endurance limit, low cycle and high cycle fatigue, and notch sensitivity.	5 th	Endurance limit, notch sensitivity.
	6 th	Endurance limit-approximate estimation, reversed stresses- design for finite and infinite life and cumulative damage in fatigue.		Design for finite and infinite life and cumulative damage in fatigue.
			6 th	Numerical on design for finite life. Numerical on design for
4 th	7 th	Soderberg Line, Goodman Line and Modified Goodman Diagrams. Assignment.	7 th	infinite life. Numerical on design for cumulative damage in fatigue.
	8 th	UNIT II Riveted Joints: Riveted joints for boiler shell according to I. B. R.		Numerical on Soderberg Line.
			8 th	Numerical on Goodman Line. Numerical on Modified Goodman Diagram.
5 th	9 th	Riveted structural joint, and eccentrically loaded riveted joint.	9 th	Design and numerical on Riveted joints for boiler shell according to I. B. R.
	10 th	Welded Joints Types of welded joints, strength of welds under axial load, welds under eccentric loading.		Design and numerical on Riveted joints for boiler shell according to I. B. R.
			10 th	Design and numerical on Riveted structural joint. Design and numerical on eccentrically loaded riveted joint.

	11 th	Bolted Joints: Bolt of uniform strength, bolted joint-simple analysis.	e e th	Numerical on design of welds under axial load.
	12 th	Eccentrically loaded bolted joints.	11	Numerical on design of
				welds under axial load.
6 th			th	Numerical on design of welds under accentric
				loading.
			12"	Numerical on design of
				welds under eccentric
				loading.
	13 th 14 th	Springs: Types of springs, helical spring terminology,	13 th	Numerical on design of
		Design for helical springs.		bolted joints.
		Spring design-trial and error method, Design against fluctuating load surge in springs		holted joints
th		nucluuting loud, surge in springs.		Numerical on design of
7"			14 th	bolted joints with
				eccentric loads.
				Numerical on design of
				bolted joints with
				eccentric loads.
	15^{th}	Design of leaf springs, rubber springs. Assignment.		Numerical on design for
		LINUT III Transmission Shafter Shaft design on strongth	1 c th	Numerical on design for
	16 th	basis and torsional rigidity basis ASME code for shaft	15	helical springs
	10	design.		nencai springs.
8 th				Numerical on design for
				helical springs subjected
			16 th	to fluctuating loads.
			10	Numerical on design for
				helical springs subjected
		Design of hollow sheft on story oth hosis and to give a		to fluctuating loads.
	17 th 18 th	Design of hollow shaft on strength basis and torsional		Numerical on design of
			17 th	Numerical on design of
- th		Keys: Types of keys, design of square and flat keys.		leaf springs.
9"				Numerical on design of
			1 Q th	leaf springs.
			10	Numerical on design of
				shaft.
	19 th	Clutches: Various types of clutches, design of friction		Numerical on design of
		clutches namely single disc, multidisc, torque		hollow shaft on strength
			19 th	Numerical on design of
10 th	20 th	Design of cone clutch and, torque transmitting		hollow shaft on torsional
		capacity.		rigidity basis.
				Numerical on design for
			20 th	square and flat key.
			20	Numerical on design of
				single disc clutch.
	21 st	Design of centrifugal clutch, torque transmitting		Numerical on design of
		Brakes: Energy equations block brake with short shoe	21 st	Numerical on design of
11 th	22 nd	block brake with long shoe.	21	cone clutch.
				Numerical on design of
				centrifugal clutch.
			22 nd	Numerical on design of
				clutch with thermal
				Numerical on design of
12 th	23 rd	Internal expanding brake, band brakes, disc brakes, thermal considerations. Assignment.	23 rd	block brake with short
				shoe.

	24 th	UNIT IV Rolling contact bearings : Types of rolling contact bearing, selection of bearing-type.		Numerical on design of block brake with long shoe.
			24 th	Numerical on design of Internal expanding brake. Numerical on design of
				band brakes
13 th	25 th	Static and dynamic load carrying capacity, equivalent bearing load, load-life relationship.	25 th	Numerical on design of disc brakes.
	26 th	Selection of bearings from manufacturer's catalogue, selection of taper roller bearing,		Numerical on selection of bearings from manufacturer's catalogue
			26 th	Numerical on selection of bearings from manufacturer's catalogue
				taper roller bearing.
14 th	27 th	Design for cyclic loads and speeds, bearing failure-causes and analysis.	27 th	Numerical on selection of taper roller bearing.
	28 th	Sliding contact bearings: Basic modes of lubrication, Raimondi and Boyd method,		Numerical on design for cyclic loads and speeds for ball bearing.
			Je th	Numerical on design for cyclic loads and speeds for ball bearing.
			20	Numerical on design for cyclic loads and speeds for ball bearing.
15 th	29 th	Bearing design selection of parameters.	- 29 th	Numerical on design of journal bearings using Raimondi and Boyd's Charts.
	30 th	Bearing materials, bearings failure-causes and remedies. Assignment.		Numerical on design of journal bearings using Raimondi and Boyd's Charts.
			20 th	Numerical on design of journal bearings using Raimondi and Boyd's Charts.
			30	Numerical on design of journal bearings using Raimondi and Boyd's Charts.

(Signature of the teacher concerned with date)