Lesson Plan

Name of Institute : Ambala College of Engineering and Applied Research, Devsthali.

Name of the Faculty member: Dr. Monica Khanna

Discipline : Applied Sciences and Humanities

Semester : 2nd

Subject : Chemistry BS-101A

Chemistry Lab BS-103LA

Lesson Plan Duration : 15 weeks (from January 2020-April, 2020)

Work Load : L-3, T-1, P-3

	Theory			Practical	
Week	Lectu re day	Topic (including assignment/ test)	Practi cal day	Topic	
1 st	1 st	Molecular orbitals of diatomic molecules (N2, O2, CO).	1 st	To determine the temporary& permanent hardness of a given water sample by EDTA method	
	2 nd	Equations for atomic and molecular orbitals. Energy level diagrams of diatomics.			
	3 rd	Pi-molecular orbitals of butadiene and benzene			
2 nd	4 th	Aromaticity.	2 nd	To determine the calcium & magnesium hardness of a given water sample by EDTA method	
	5 th	Crystal field theory			
	6 th	Energy level diagrams of [Co(NH ₃) ₆], [Ni(CO) ₄], [PtCl ₂ (NH ₃) ₂]			
3 rd	7 th	Magnetic properties of metal complexes.	3rd	To determine the alkalinity of a given water sample	
	8 th	Band structure of solids & Role of doping on band structures			
	9 th	Doubts and Test (Crystal Field Theory)			
4 th	10 th	Principles of spectroscopy and selection rules.	4 th	To determine the amount of dissolved oxygen present in a given water sample	
	11 th	Electronic spectroscopy (basic concept).			
	12 th	Fluorescence and its applications in medicine.			
5 th	13 th	Vibrational spectroscopy of diatomic molecules. Applications.	5 th	Viva Voce	
	14 th	Rotational spectroscopy of diatomic molecules. Applications.			

			1	
	15 th	Basic concepts of Nuclear magnetic resonance		
6 th	16 th	Basic concepts of Magnetic resonance imaging,	6 th	Using Redwood Viscometer find out the viscosity of an oil sample
	17 th	Diffraction & Scattering		
	18 th	Doubts and Test (Spectroscopy)		
7 th	19 th	Thermodynamic functions	7 th	To determine the relative viscosity of a given liquid using Ostwald's viscometer
	20 th	Estimation of Energy		
	21 st	Estimation of Entropy		
8 th	22 nd	Free energy and emf. Cell potentials,	8 th	To determine the total iron content present in a given iron ore solution
	23 rd	The Nernst equation and applications.		
	24 th	Test(Thermodynamics)	-	by redox titration
9 th	25 th	Effective nuclear charge, penetration of orbitals.	9th	Determination of the strength of a given HCl solution by titrating it with standard NaOH solution using conductometer
	26 th	Variations of s, p, d and f orbital energies of atoms in the periodic table,		
	27 th	Electronic configurations, atomic and ionic sizes.		
10 th	28 th	Ionization energies, electron affinity and electronegativity, polarizability,	10 th	Viva Voce
	29 th	Oxidation states, coordination numbers and geometries		
	30 th	Hard soft acids and bases, molecular geometries (H ₂ O, NH ₃ , PCl ₅ , SF ₆ , CCl ₄ , Pt(NH ₃) ₂ Cl ₂ Test	-	
11 th	31 st	Representations of 3 dimensional structures,	11 th	Determination of the strength of a given HCl solution by titrating it with standard NaOH solution using pH meter
	32 nd	Structural isomers		
	33 rd	Stereo isomers		
12 th	34 th	Configurations and symmetry	12 th	Synthesis of a drug Paracetamol
	35 th	Chirality		
	36 th	Enantiomers, diastereomers,		
13 th	37 th	Optical activity	13 th	Synthesis of a drug Aspirin
	38 th	Absolute configurations & Conformational analysis		
			1	l

	39 th	Doubts and Test (Stereo chemistry)		
14 th	40 th	Introduction to reactions involving substitution,	14 th	Internal Viva
	41 st	Addition, Elimination reactions		
	42 nd	Oxidation, Reduction reactions.		
15 th	43 rd	Cyclization and Ring openings reactions.	15 th	Doubts/Revision
	44 th	Synthesis of Paracetamol & Aspirin		
	45 th	Doubts and Test (Reactions)		

Dr. Monica Khanna

Associate Professor

APS Department

ACE

Name of Institute : Ambala College of Engineering and Applied Research, Devsthali.

Name of the Faculty member: Dr. Monica Khanna

Discipline : Applied Sciences and Humanities

Semester : 2nd

Subject : Chemistry BS-101A

Syllabus for Sessionals

1st Sessional
Molecular orbitals of diatomic molecules (N2, O2, CO).
Equations for atomic and molecular orbitals. Energy level diagrams of diatomics.
Pi-molecular orbitals of butadiene and benzene
Aromaticity.
Crystal field theory
Energy level diagrams of [Co(NH ₃) ₆], [Ni(CO) ₄], [PtCl ₂ (NH ₃) ₂]
Magnetic properties of metal complexes.
Band structure of solids & Role of doping on band structures
2 nd Sessional
Principles of spectroscopy and selection rules.
Electronic spectroscopy (basic concept).
Fluorescence and its applications in medicine.
Vibrational spectroscopy of diatomic molecules. Applications.
Rotational spectroscopy of diatomic molecules. Applications.
Basic concepts of Nuclear magnetic resonance
Basic concepts of Magnetic resonance imaging,
Diffraction & Scattering
Thermodynamic functions
Estimation of Energy
Estimation of Entropy
Free energy and emf. Cell potentials,
The Nernst equation and applications.
3 rd Sessional
Effective nuclear charge, penetration of orbitals,
Variations of s, p, d and f orbital energies of atoms in the periodic table,
Electronic configurations, atomic and ionic sizes,
Ionization energies, electron affinity and electronegativity, polarizability,
Oxidation states, coordination numbers and geometries
Hard soft acids and bases, molecular geometries (H ₂ O, NH ₃ , PCl ₅ , SF ₆ , CCl ₄ , Pt(NH ₃) ₂ Cl ₂)
Representations of 3 dimensional structures,
Structural isomers
Stereo isomers

Configurations and symmetry
Chirality
Enantiomers, diastereomers,
Optical activity
Absolute configurations & Conformational analysis

Dr. Monica Khanna

Associate Professor