Lesson Plan

Name of Institute	: Ambala College of Engineering and Applied Research, Devsthali.
Name of the Facult	y member: Mr. Ajay Singh
Discipline	: Applied Sciences and Humanities
Semester	: 2 nd
Subject	: Introduction to Electromagnetic Theory BS-119A
Electromagnetics	Lab BS-121LA
Lesson Plan Durati	ion : 15 weeks (from January 2020-April, 2020)
Work Load	: L-3, T-1, P-3

	Theory		Practical		
Week	Lectu re day	Topic (including assignment/ test)	Practi cal day	Торіс	
1 st	1 st	Electrostatics in Vacuum: Calculation of Electric Field: Coulomb's law	1 st	1)To study the variation of magnetic field with distance and to find the	
	2 nd	Continuous charge distribution;		radius of coil by Stewart and Gee's apparatus.	
	3 rd	Divergence and Curl of Electrostatic Fields			
2 nd	4 th	Field lines, flux, Gauss's law	2 nd	2)To find the coefficient of mutual inductance of	
	5 th	Applications of Gauss's law		two coils.	
	6 th	Electrostatic Potential: Comments on potential			
3 rd	7 th	Poisson's and Laplace's Equation	3 rd	3)To study the	
	8 th	the potential of a localized charge distribution		field on coil diameter and number of turns	
	9 th	Electrostatic Boundary Conditions; Work and Energy in Electrostatics: the work done to move a charge			
4 th	10 th	the energy of a point and continuous charge distribution.	4 th	4)To determine the dielectric constant of dielectric	
	11 th	Revision of unit 1st		materials	
	12 th	Electrostatics in a Linear Dielectric			

		Medium: Polarization		
5 th	13 th	dielectrics, induced dipoles	5 th	Viva Voce
	14 th	alignments of polar molecules		
	15 th	The field of a Polarized Object: bound charges and its physical interpretation		
6 th	16 th	The Filed Inside a Dielectric	6 th	5)To verify Newton's formula and hence to find the focal length of the given convex lens
	17 th	The Electric Displacement: Gauss's law in the presence of dielectrics		
	18 th	A deceptive parallel, Boundary conditions		
7 th	19 th	Linear Dielectrics: Susceptibility, Permittivity	7 th	6)To find the frequency of A.C. mains by using Sonometer and horse shoe magnet.
	20 th	dielectric constant, Boundary value problems with linear dielectrics		
	21 st	Energy in dielectric systems		
8 th	22 nd	Forces in dielectrics	8 th	7)To find the resistance of a galvanometer by post office box
	23 rd	Revision of 2 nd unit		
	24 th	Magnetostatics: The Lorentz Force Law		
9 th	25 th	magnetic fields, magnetic forces	9 th	8)To convert a galvanometer into an ammeter of desired range and verify the same
	26 th	Currents, Biot- Savart law		
	27 th	Divergence and Curl of magnetic field		
10 th	28 th	Magnetic Vector Potential: vector potential	10 th	Viva Voce
	29 th	magnetostatic boundary conditions		
	30 th	multiple expansion of vector potential.		
11 th	31 st	Magnetostatics in a linear magnetic: Magnetization	11 th	9)To find the wavelength of monochromatic light by Newton's ring experiment
	32 nd	Effect of magnetic field on atomic orbits		
	33 rd	The Field of a Magnetized Object: Bound currents, Physical interpretation of bound currents		
12 th	34 th	The Auxiliary Magnetic Field: Ampere's law in magnetized materials	12 th	10)To find the wavelength of sodium light by Michelson's

	35 th	A deceptive parallel, Boundary conditions		interferometer
	36 th	Linear and Nonlinear Media: magnetic susceptibility and permeability, ferromagnetism		
13 th	37 th	Revision of unit 3rd	13 th	Viva voce
	38 th	Faraday's law: Electromotive Force: Ohm's law, Motional emf		
	39 th	Electromagnetic Induction: Faraday's law, The induced electric field, inductance		
14 th	40 th	energy in magnetic fields.	14 th	Internal Viva
	41 st	Maxwell's Equations: Electrodynamics before Maxwell, How Maxwell fixed Ampere's law		
	42 nd	Maxwell's equations, Maxwell's equations in matter.		
15 th	43 rd	Electromagnetic Waves: Electromagnetic Waves in Vacuum: the wave equation for electric and magnetic field;	15 th	Doubts/Revision
	44 th	Electromagnetic Waves in Matter: propagation in linear media.		
	45 th	Revision of 4 th unit		

Mr.Ajay Singh

Assistant Professor

APS Department