Lesson Plan

Name of the Faculty	: Er. Vijay Kumar Anand
Discipline	: Electronics and Communication Engineering
Semester	: 4 th
Subject	: Analog Circuits (EC-206A)
Lesson Plan Duration	: 15 weeks (from April, 2021 to July, 2021)

****Work Load (Lecture / Practical) per week (in hours) :** Lectures-03, Practical-03

	Theory		Practical		
Week	Lecture	Торіс	Practical	Experiment	
	Day	(including assignment / test)	Day		
1 st	1 st	Introduction to Analog Electronics, Course Objectives and Outcomes.	1 st	Design a simple common emitter (CE) amplifier Circuit using BJT	
	2 nd	Voltage amplifier, current amplifier, trans-conductance amplifier and trans- resistance amplifier.		and find its gain and frequency response.	
	3 rd	Biasing schemes for BJT and FET amplifiers			
2 nd	4 th	Bias stability, various configurations (such as CE/CS, CB/CG, CC/CD) and their features	2 nd	Design a BJT Emitter follower and determination of the gain, input and output impedances	
	5 th	Various configurations (such as CE/CS, CB/CG, CC/CD) and their features			
	6 th	Small signal analysis of BJT Amplifier			
3 rd	7 th	Low frequency transistor models	3 rd	Design a differential amplifier	
	8 th	Estimation of voltage gain, input resistance, output resistance		using BJT and calculate its gain and frequency response	
	9 th	Design procedure for particular specifications			
4 th	10 th 11 th	Low frequency analysis of MSA Derivation of gain, cut off frequencies	4 th	Viva Voce 1	

	12 th	Assignment 1/ Class Test		
5 th	13 th	High frequency transistor models.	5 th	Design a single stage common
	14 th	Frequency response of single stage		emitter transistor amplifies using
		Amplifier		BC107 with $V_{CC}=12V$,
	15 th	Frequency response of multistage		$V_{CEQ}=5V$, $V_{E}=3V$, $R_{L}=47K$ and
		amplifiers,		f _L =100Hz
6 th	16 th	Cascode amplifier	6 th	Design a RC coupled Single
	17 th	Class A power amplifier its power,		stage BJT amplifier and
		efficiency and linearity issues		determination of the gain,
	18 th	Class B power amplifier its power,		frequency response, input and
		efficiency and linearity issues		output impedances
7 th	19 th	Class AB power amplifier its power,	7 th	Design a self bias circuit for an
		efficiency and linearity issues		NPN silicon transistor having
	20 th	Class C power amplifier its power		$h_{fe}=100$ and $V_{be}=0.6V$. The
		efficiency and linearity issues		desired Q-point is $V_{ce}=5V$ and
	21 st	Assignment 2/ Class test		$I_c=1mA$ and S <or 8.<="" equal="" th="" to=""></or>
				Assume V_{cc} =10V and R_E =1K Ω
8 th	22 nd	Feedback Topologies: Voltage series,	8^{th}	Viva-Voce 2
		current series, voltage shunt, current		
		shunt		
	23 rd	Effect of feedback on gain, bandwidth		
		calculation with practical circuits		
	24 th	Concept of stability		
9 th	25 th	Gain margin and phase margin.	9 th	Design and test the performance
	26 th	Oscillators: Barkhausen's criterion,		of BJT-RC Phase shift Oscillator
		Sinusoidal oscillators		for $f0 \le 10 \text{ KHz}$
	27 th	Phase shift oscillator		
10 th	28 th	Wein Bridge oscillator	10^{th}	Design and test the performance
	29 th	Resonant circuit oscillator, a general		of BJT -Colpitt Oscillators for
		form of oscillator		RF range f0 ≥100KHz.
	30 th	Crystal oscillator		
11 th	31 st	LC oscillators : Hartley oscillator	11^{th}	Design and test the performance
	32 nd	Colpitt oscillator		of BJT -Hartley Oscillators for
1	rd			

12^{th}	34 th	Assignment 3/Class test	12^{th}	Design Schmitt trigger using op-
	35 th	Op-Amp Applications: Schmitt trigger		amp and verify its operational
		and its applications		characteristics
	36 th	Current mirror: Basic topology and its		
		variants, V-I characteristics,		
13 th	37 th	Output resistance and minimum	13 th	Design an astable multivibrator
		sustainable voltage (VON), maximum		using 555 timer.
		usable load		
	38 th	Differential amplifier: Basic structure		
		and principle of operation		
	39 th	Calculation of differential gain		
14 th	40^{th}	Common mode gain, CMRR and ICMR	14^{th}	Design a monostable
	41 st	OP-AMP design: design of differential		multivibrator using 555 timer
		amplifier for a given specification		
	42^{nd}	Design of gain stages		
15 th	43 rd	Design of output stage	15^{th}	Viva-Voce 3
	44 th	Revision/Quiz		
	45 th	Revision/Class test		

Er. Vijay Kumar Anand

Assistant Professor ECE Department ACE