AMBALA COLLEGE OF ENGINEERING AND APPLIED RESERACH DEPTT. OF ELECTRONICS & Comm. ENGINEERING LECTURE PLAN- (BS-207A)

Name of the Faculty	: Dr. Pardeep Singh
Discipline	: Applied Sciences & Humanities
Semester	: 4th (Elect. & Comm. Engg.)
Subject	: Applied and Computational Mathematics (BS-207A)
Lesson Plan Duration	: 15 Weeks (from April, 2021 to July 2021)

Work Load: Lecture: 03, Tutorials: 00 per week

Week		Theory	
	Lecture	Topic(including assignment /test)	
	Day		
1 st	1 st	First order ordinary differential equations	
	2^{nd}	Exact, linear differential equations	
	3 rd	Bernoulli's equations	
2 nd	4^{th}	Euler's equations	
	5 th	Equations not of first degree: equations solvable for p	
	6 th	Equations solvable for y, equations solvable for x and Clairaut's	
ard	7 th	type.	
3 rd	-	Second order linear differential equations with constant coefficients	
	8 th	Formation of Partial Differential Equations, Solutions of first order	
	oth	linear and non-linear PDEs	
th	9 th	Charpit's method	
4^{th}	10 th	Solution to homogenous linear partial differential equations (with	
		constant coefficients) by complimentary function and particular	
	th	integral method	
	11^{th}	Solution to homogenous linear partial differential equations (with	
		constant coefficients) by complimentary function and particular	
	, , th	integral method	
th	12 th	Test	
5 th	13 th	Multiple Integration: Double integrals	
	14 th	Change of order of integration in double integrals	
	15 th	Change of variables (Cartesian to polar Cordinates)	
6 th	16 th	Triple integrals	
	17 th	Orthogonal curvilinear coordinates	
	18^{th}	Simple applications involving cubes, sphere	
7 th	19 th	Vector Calculus: Gradient, divergence	
	20 th	Curl and their properties	
	21 st	Directional derivative. Line integrals	
8 th	22 nd	Surface integrals, volume integrals	
	$23^{\rm rd}$	Theorems of Green, Gauss and Stokes (without proof)	

	24 th	Test
9 th	25 th	Laplace Transform
	26^{th}	Laplace Transform of Elementary Functions
	27 th	Basic properties of Laplace Transform
10 th	28 th	Laplace transform of periodic functions
	29 th	Finding inverse Laplace transform by different methods
	30 th	Convolution theorem,
11 th	31 st	Solving ODEs by Laplace Transform method
	32 nd	Test
	33 rd	Solution of polynomial and transcendental equations: Bisection
		method
12 th	34 th	Newton-Raphson method
	35 th	Regula-Falsi method
	36 th	Lagrange's formulae
13 th	37 th	Numerical Differentiation using Newton's forward
	38 th	Numerical Differentiation Using backward difference formulae
	39 th	Simpson's 1/3rd rule
14 th	40 th	Taylor's series
	41 st	Runge-Kutta method for solving first and second order equations.
	42 nd	Runge-Kutta method for solving first and second order equations.
15 th	43 rd	Simpson's 1/3rd rule
	44 th	Test
	45^{th}	Revision

Dr. Pardeep Singh Assoc. Professor Applied Sciences Department ACE