Lesson Plan

Name of the Faculty	:	Er. Sorabh Malhotra (Theory/Practical)
Discipline	:	Electronics and Communication Engineering
Semester	:	4 th
Subject	:	Digital Communication (EC-202A)
		Communication Lab (EC-204LA)
Lesson Plan Duration	:	15 weeks (from April, 2021 to July, 2021)

****Work Load (Lecture / Practical) per week (in hours) :** Lectures-03, Practical-02

	Theory			Practical	
Week	Lecture	Торіс	Practical	Торіс	
	Day	(including assignment / test)	Day		
1^{st}	1 st	Model of Digital Communication	1 st	1.(a) To study Pulse Code	
		System, Sampling Theorem		Modulation (Sample and	
	2 nd	Sampling for baseband and bandpass		Hold, Quantization and	
		signals,Natural and Flat top sampling		Encoding using ADC)	
	3 rd	Signal recovery and holding		(b) To study the basic	
2^{nd}	4 th	Quantization of signal and quantization	2^{nd}	characteristics of Low pass	
		error		Filter, High Pass Filter	
	5 th	Source coding, Companding			
	6 th	Noise in PCM System			
3 rd	7 th	DPCM, ADPCM	3 rd	2. To study Frequency Shift	
	8 th	APCM, Delta Modulation		Keying (FSK), and	
	9 th	Adaptive Delta Modulation	1	comparison with the basic	
4 th	10 th	Comparison of PCM, DPCM and DM,	4 th	Modulation	
		Quantization Noise			
	11 th	Assignment-1/ Class Test			
	12 th	Inter-symbol interference			
5 th	13 th	Calculation of output signal power	5 th	3. To study Amplitude Shift	
	14 th	Time division multiplexed systems		Keying	
	15 th	Effect of thermal noise			
6 th	16 th	O/P Signal to noise ratio in PCM,	6 th		
		Quantization noise in DM		4.To study and verify Delta Modulation Techniques	
	17 th	O/P Signal to quantization noise ratio in			
		DM			
	18 th	Matched Filter and its properties	1		

7 th	19 th	Average probability of symbol error in binary enclosed PCM receiver	7 th	5.To study Phase Shift Keying (PSK)
	20 th	Nyquist criterion for distortionless base band binary transmission		
	21 st	Ideal Nyquist Channel, Raised cosine		
8 th	22 nd	Tapped delay line equalization,Adaptive equalization Correlative levelcoding, Duo- binary Signalling	8 th	Viva – Voce -1
	23^{rd} 24^{th}	LMS algorithm, Eye pattern		
9 th	25 th 26 th 27 th	Introduction to Information, Entropy Entropy, Coding Techniques Huffman Coding	9 th	6.Setting up a Fiber Optic Analog Link
10 th	28 th 29 th 30 th	Channel Capacity Linear Block Codes Channel Coding	10 th	7. Setting up a Fiber Optic Digital Link
11 th	31 st 32 nd	Matrix Description Syndrome Decoding, Hamming Code	11 th	Viva Voce-2
12 th	33 th 34 th 35 th 36 th	Cyclic Codes Convolution Codes and its generation Viterbi decoding Assignment-3/ Class Test	12 th	8.Losses in Optical Fiber (a) Propagation Loss
				(b)Bending Loss
13 th	37 th	Pass band transmission model, gram Schmidt orthogonalization procedure	13 th	9. To Verify Measurement of Numerical Aperture
	38 th 39 th	Geometric Interpretation of signals Response of bank of correlaters to noise input, Detection of known signal in noise		10. To Study Time Division Multiplexing of signals
14 th	40 th	Hierarchy of digital modulation techniques, BPSK, DPSK, DEPSK	14 th	
	$\frac{41^{\text{st}}}{42^{\text{nd}}}$	QPSK,ASK,QASK FSK,M-ary FSK, MSK,		
15 th	43 rd	M-ary QAM, Signal space diagram	15 th	Viva Voce-3

44 th	Effect of intersymbol interference,	
	synchronization	
45 th	Assignment-4/ Class Test	

(**Er. Sorabh Malhotra**) Assistant Professor ECE Department, ACE