Lesson Plan

: Biotechnology : 4th Discipline

Semester Session

: April 2021 to Aug. 2021 : Molecular Biology (Theory code- BTE 202A; Practical code: BTE-212LA) Subject

Lesson Plan Duration : 15 weeks

**Work Load (Lecture/Practical) per week (in hours): Lecture 03; Practical	**Work Load	(Lecture/Practical)	per week (in hours)	: Lecture 03:	Practical:
--	-------------	---------------------	------------	-----------	---------------	------------

Week		Theory]	Practical	
	Lecture Day	Topic(including assignment /test)	Practical Day	Topic	
1 st	1 st	DNA/RNA as the genetic material	1 st	Isolation of	
	2^{nd}	-do-		genomic DNA	
	3 rd	Double helical structure of DNA.		from eukaryotic	
		Types of DNA		cells.	
2 nd	4 th	Super coiling and periodicity of DNA.	2 nd	-do-	
		Linking number of DNA. Nature of			
		multiple alleles			
	5 th	Cis acting sites and Trans-acting			
		molecules. Euchromatin and			
		heterochromatin, Nucleosomes			
	6 th	-do-			
3 rd	7 th	Organelle DNA- Mitochondrial and	3 rd	Isolation of RNA	
		chloroplast DNA.		from eukaryotic	
	8 th	Origin of DNA replication, Bacterial		cells.	
		and eukaryotic replicons.			
	9 th	DNA polymerases. Mechanism and			
		regulation of DNA replication in			
		prokaryotes and eukaryotes.			
4 th	10^{th}	-do-	4 th	Isolation of	
	11^{th}	Class Test		proteins from	
	12^{th}	Various RNA species and their		eukaryotic cells.	
		properties- tRNA as an adapter and			
		turnover of			
		mRNA.			
5 th	13 th	Transcription in Prokaryotes: RNA	5 th	Isolation of	
		polymerases. Mechanism of		genomic DNA	
		transcription- initiation, elongation and		from prokaryotic	
		termination. Role of sigma factor in		cells	
		transcription.			
	14 th	do-			
	15 th	Transcription in Eukaryotes: RNA			
		Polymerases. Downstream and			
		upstream promoters.			
		Techniques to define promoters- foot			

		printing experiment		
6 th	16 th	-do-	6 th	Isolation of
	17 th	17 th Mechanism of transcription, Interaction		plasmid DNA
		of upstream factors with basal		from Prokaryotic
		apparatus. Role of enhancers.		cells
	18 th	-do-		
7 th	19 th	Post-transcriptional modifications of	7 th	Restriction
		various RNA species. Transcription in		mapping of
		mitochondria and chloroplast		plasmid
	20 th	-do-		DNA:This
	21 st	The Operon: Positive and negative		experiment
		control of transcription		involves single
		-		and double
				digestion of the
				plasmid with
				restriction
				enzymes
8 th	22 nd	Repressor-inducer complex, catabolite	8 th	Gel
		repression		electrophoretic
	23 rd	Attenuation		separation of
	24 th	Regulation of Transcription: DNA		DNA and
		binding domains- zinc finger motif,		molecular wt.
		helix loop helix, leucine zippers and		determination
		homeodomains.		
9 th	25 th	Demethylation and gene regulation	9^{th}	Gel
	26 th	Class Test		electrophoretic
	27 th	Evidence for triplet code. Properties		separation of
		of genetic code, Wobble hypothesis		RNA.
10 th	28 th	-do	10^{th}	Gel
	29 th	Structure of prokaryotic and eukaryotic		electrophoretic
		ribosomes and their role in protein		separation of
		synthesis. Mechanism of initiation,		proteins.
		elongation and termination of protein		
		synthesis.		
	30 th	-do		
11 th	31 st	Regulation of translation in prokaryotes	11 th	Transblot analysis of DNA.
		and eukaryotes.		
	32 nd	Post translational modifications of		
		proteins		
	33 rd	Role of molecular chaperones.		
12 th	34 th	Class Test	12 th	Gel Extraction of DNA
	35 th	Lariat formation, SnRNAs, cis-		
		splicing and trans-splicing reactions.		
	36 th	-do-		
13 th	37 th	Catalytic RNA- Ribozymes-		PCR
15	57			

	38 th	Small RNAs, group I &II introns.		DNA:
	39 th	-do-		Visualization by
14 th	40 th	Revision	14 th g	gel
	41 st	Revision		electrophoresis
	42 nd	Revision		
15 th	43 rd	Revision	15 th	
	44 th	Revision		
	45 th	Revision		

Faculty Signature