Lesson Plan

Name of the Faculty	: Dr. Vikas Sharma
Discipline	: Biotechnology
Semester	: 6 th
Subject	: Nano-Biotechnology (OEC-BTE-302A)
Lesson Plan Duration	: 15 Weeks (From Feb, 2021 to Jun, 2021)

Work Load(Lecture/Practical) per week(in hours): Lecture- 03; Practical- 00

Week	Week Theory			
	Lecture Day	Topic(including assignment /test)		
1 st	1 st	Introduction to Nanotechnology: Definition of Nano biotechnology, A brief		
		history of the Super small		
	2 nd	-do-		
	3 rd	Bottom-up versus top-down, discussion on nanofabrication, nanolithography		
2nd	4 th	-do-		
	5 th	Nano biotechnology, Structure property relations in materials, materials characterization techniques,		
	6 th	-do-		
3 rd	7 th	Microelectronic fabrication, scanning tunneling and atomic force microscopy		
	8 th	-do-		
	9 th	-do-		
4 th	10 th	Biomolecule-surface interactions, DNA microarrays.		
	11 th	-do-		
	12 th	BioMEMS: Introduction and overview		
		Assignment I/Test 1 of Unit I		
5 th	13 th	Biosignal transduction mechanisms. Electromagnetic transducers: basic sensing		
		mechanisms		
	14 th	-do-		
	15 th	Basic actuating mechanisms. Case studies in biomagnetic sensors.		
6 th	16 th	-do-		
	17 th	Mechanical transducers: basic sensing mechanisms, basic actuating mechanisms.		
	18 th	-do-		
7 th	19 th	Case studies in microfluidic devices. Chemical transducers: basic sensing		
		mechanism, basic actuating mechanism,		
	20 th	-do-		
		Ultimate limits of fabrication and measurement. Recent developments in BioMEMS.		
	21 st	-do-		
8 th	22 nd	Assignment II/Test 1 of Unit II		
	23 rd	Nanomaterials: Buckyballs and buckytubes		
	24 th	-do-		
9 th	25 th	Fluidics, manufacturing, diagnostics and sensors		
	26 th	Nanobiosensors, Fullerenes, Carriers		
	27 th	-do-		
10 th	28 th	Dendrimers, nanoparticles, membrane/matrices		
	29 th	-do-		
	30 th	Nanoshells, quantum dot nanocrystals, nanotubes and hybrid biological/ inorganic		
		devices.		

		-do-		
	-do-			
11 th	31 st	-do-		
	32 nd	Assignment III/Test III of Unit III		
^{33rd} Applications of nanotechnology in the life science: Leading a				
		nanobiotechnology: drug delivery		
12 th 34 th		-do-		
	35 th	Bioavailability, sustained and targeted release, nanorobots		
	36 th	-do-		
13 th	37 th	Benefits of nano drug delivery. Drug delivery using nanocrystals		
	38 th	-do-		
^{39th} Drug discovery using Resonance Light Scattering (RLS) technology,		Drug discovery using Resonance Light Scattering (RLS) technology, rapid ex-vivo		
		diagnostics		
14 th 40 th -do-		-do-		
	41 st	st Benefits of nano-imaging agents, nanoscale biosensors		
	42 nd	-do-		
15 th	43 rd	Nanosensors, nanosensors as diagnostics, nanotherapeutics		
	44 th	-do-		
	45 th	th -do-		

Lesson Plan

Name of the Faculty : Dr. Vikas Sharma

Discipline	: Biotechnology
Semester	: 8 th
Subject	:BIOCATALYSIS AND BIOTRANSFORMATION(BT402N)
Lesson Plan Duration	: 15 Weeks (From January, 2020 to April, 2020)

Work Load(Lecture/Practical) per week(in hours): Lecture- 03; Practical- 00

Week	Theory		
	Lecture	Topic(including assignment /test)	
	Day		
1 st	1 st	Introduction to biocatalysis,	
	2^{nd}	-do-	
	3 rd	Current market of biocatalysis, fermentation and applied biocatalysis,	
2 nd	4 th	Types of bioconversion reactions, limitation of Biocatalysis	
	5 th	Procedure for biotransformation, Use of cells and enzymes for biotransformation,	
	6 th	Use of cells and enzymes for biotransformation,	
3 rd	7 th	Biotransformation reactions: Types of bioconversion reactions,	
	8 th	Procedure for biotransformation,	
	9 th	Genetic manipulations of organism for biotransformation, applications of bioconversions.	
4 th	10 th	Reaction types of microbial transformation from steroids	
	11 th	-do-	
	12 th	microbial breakdown of sterols side chain	
	d	OBT-1	
5 th	13 th	Transformation of non- steroidal compounds: ascorbic acid,	
	14 th	dihydroxy acetone from glycerol, prostaglandins,	
	15 th	hydantoinases, carbamylases,	
6 th	16 th	hydantoinases, carbamylases, catalytic antibodies.	
	17 th	Transformation of antibiotics: Acylases and peptidases,	
	18 th	reaction of penicillin	
7 th	19 th	penicillin and cephalosporin substrates,	
	20 th	protection of amino groups	
	21 st	Transformation of pesticides: Accumulation of pesticides	
8th	22 nd	pesticides as carbon source,	
	23 rd	conjugate formation	
	24 th	Biotransformation of nitrile group: Nitrile Hydratase and Nitrilases,	
9th	25 th	Biotechnology of Nitrile transformation,	
	26 th	Regio and stereo selective biotransformation of Nitriles,	
	27 th	-do-	
10th	28 th	Commercial processes and redesign of existing enzymes by protein engineering,	
	29 th	Search for Novel Nitrile biotransforming activities,	
	30 th	metabolic engineering by multistep biotransformation,	
11th		Cyanide biotransformation.	
	31 st	OBT-2	
	32 nd	Biotransformation by lipases: Commercial lipases, properties and application of lipases,	
12 th	33 rd	lipid or surfactant coated lipases, inter-esterification of fats and oils,	
	34 th	enantioselective esterification by lipases,	
	35 th	-do-	
13 th	36 th	Commercial application (food ingredients and enantiomerically pure chemical and pharmaceutical intermediates)	

	37 th	Alkaloid biotransformation: Tropane Alkaloid biosynthesis,	
	38 th	Alkaloid biotransformation:: microbial metabolism of Tropane akaloids,	
14 th	39 th	Alkaloidbiotransformation::transformation of morphine alkaloid by Pseudomonas putida	
		M10	
	40 th	-do-	
	41 st	microbial transformation of heroin.	
15 th	42 nd	OBT-3	
	43 rd	Revision	
	44 th	Revision	

Lesson Plan

Name of the Faculty	: Dr Vikas Sharma
Discipline	: Biotechnology Engineering
Semester	: 8th
Subject	: Advanced Techniques in Biotechnology Lab
Lesson Plan Duration	: 15 Weeks (From January, 2020 to April, 2020)

**Work Load(Lecture/Practical) per week(in hours): 02

Week	ek Practical	
	Practical Day	Topic
1^{st}	1 st	Characteristics of Transducers(Temperature)
2^{nd}	2 nd	Characteristics of Transducers (Pressure)
3 rd	3 rd	Characteristics of Transducers (Flow)
4^{th}	4 th	Dynamics of First order system for step/ impulse input
5 th	5 th	Non Interacting system
6 th	6 th	Interacting system
7 th	7 th	Control of temperature in a bioprocess
8 th	8 th	Control of pH in a bioprocess
9 th	9 th	Control of Pressure in a bioprocess
10^{th}	10 th	Control of Flow rates in a bioprocess
11^{th}	11 th	Optical density measurement of bacterial culture
12 th	12 th	Measurement of dissolved oxygen in the growth media
13 th	13 th	Measurement of CO2 in a given sample
14^{th}	14 th	Measurement of Temperature, light & Humidity in growth chambers