Lesson Plan

Name of the Faculty	$:$ Dr. Virender Singh
Discipline	$:$ Biotechnology
Semester	$:$ 6th
Session	$:$ Feb 2021 to Jun 2021
Subject	$:$ Plant Biotechnology (Theory code- BTE-304A; Practical code- BTE-314 LA)

Lesson Plan Duration : 14 weeks
**Work Load(Lecture/Practical) per week (in hours): 03
Practical: 3

Week	Theory		Practical	
	Lecture Day	Topic(including assignment/test)	Practical Day	Topic
$1^{\text {st }}$	$1{ }^{\text {st }}$	Introduction to the subject	$1^{\text {st }}$	Laboratory set Up
	$2^{\text {nd }}$	Concept of Cellular Totipotency		
	$3^{\text {rd }}$	Types of culture: Seed culture, Embryo culture, Cell culture \& Protoplast culture		
$2^{\text {nd }}$	$4^{\text {th }}$	Callus culture, Organ culture	$2^{\text {nd }}$	Preparation of nutrient stock solutions and chelating agents
	$5^{\text {th }}$	Secondary metabolites		
	$6^{\text {th }}$	Secondary metabolites production and applications		
$3^{\text {rd }}$	$7^{\text {th }}$	Stages of micropropagation	$3^{\text {rd }}$	continue
	$8^{\text {th }}$	Meristem and shoot tip culture		
	$9^{\text {th }}$	Axillary bud proliferation		
$4^{\text {th }}$	$10^{\text {th }}$	Organogenesis	$4^{\text {th }}$	Handling and sterilization of media and plant material
	$11^{\text {th }}$	Embryogenesis		
	$12^{\text {th }}$	Advantages and disadvantages of micropropagation		
$5^{\text {th }}$	$13^{\text {th }}$	Anther/ Microspore culture	$5^{\text {th }}$	Preparation of culture media from stock solution
	$14^{\text {th }}$	Gynogenic haploids, Significance and use of haploids		
	$15^{\text {th }}$	Chromosome elimination techniques \& chromosome doubling		
$6^{\text {th }}$	$16^{\text {th }}$	Methods of protoplast isolation, protoplast development	$6^{\text {th }}$	Establishment of callus culture using different explants
	$17^{\text {th }}$	Somatic hybridization, identification and selection of hybrid cells		
	$18^{\text {th }}$	Cybrids, potential of somatic hybridization \& its limitations		
$7^{\text {th }}$	$19^{\text {th }}$	Nomenclature \& methods of Somaclonal variations	$7^{\text {th }}$	Preparation of culture media for direct plant regeneration from axillary nodes and nodal tissues
	$20^{\text {th }}$	Causes of Somaclonal variations and Gametoclonal variations		
	$21^{\text {st }}$	Applications \&disadvantages of somaclonal variations		
$8^{\text {th }}$	$22^{\text {nd }}$	Method of cryopreservation and cryoprotectants	$8^{\text {th }}$	Innoculation of axillary nodes and nodal tissues
	$23^{\text {rd }}$	Slow growth cultures and		

		Advantages \& disadvantages		for direct plant regeneration.
	$24^{\text {th }}$	Nitrogen fixation \& nodulation		
$9^{\text {th }}$	$25^{\text {th }}$	Nitrogenase, hydrogenase	$9^{\text {th }}$	Media preparation for seed culture and callus propagation.
	$26^{\text {th }}$	Growth promotion by free-living bacteria		
	$27^{\text {th }}$	Transient and stable gene expression		
$10^{\text {th }}$	$28^{\text {th }}$	Chimeric gene vectors, marker genes	$10^{\text {th }}$	Seed culture on MS media
	$29^{\text {th }}$	Selectable markers		
	$30^{\text {th }}$	Agrobacterium mediated method of gene transfer		
$11^{\text {th }}$	$31^{\text {st }}$	Physical methods of gene transfer	$11^{\text {th }}$	Inoculation and subculture for mass propagation of callus
	$32^{\text {nd }}$	Chemical methods of gene transfer		
	$33^{\text {rd }}$	Resistance to biotic stresses: insect resistance		
$12^{\text {th }}$	$34^{\text {th }}$	Virus and disease resistance	$12^{\text {th }}$	Isolation of plant genomic DNA using CTAB method.
	$35^{\text {th }}$	Development of abiotic stress and senescence-tolerance: Oxidative stress, salt stress		
	$36^{\text {th }}$	Herbicide resistance and Delay in fruit ripening		
$13^{\text {th }}$	$37^{\text {th }}$	Transgenics for improved quality	$13^{\text {th }}$	Organogenesis/somatic embryogenesis from callus culture
	$38^{\text {th }}$	Terminator seed technology		
	$39^{\text {th }}$	Trangenic plants as bioreactors		
$14^{\text {th }}$	$40^{\text {th }}$	Class Test	$14^{\text {th }}$	Agrobacterium mediated method of gene transfer

Faculty Signature

