Lecture Plan

Name of Institute : Ambala College of Engineering and Applied Research

Name of the Faculty member : Gurpinder Singh

Discipline : Mechanical Engineering

Semester : 7th

Subject : Automation in Manufacturing (MCA -401) Lesson Plan Duration : 15 weeks (from Sep 2021 to Jan 2022)

Work Load : L-3

		Theory	Practical
Week	Lecture	Topic (including assignment/ test)	
1 st	day 1	Production system, automation in production system	
	2	Manual labour in production system, automation principle and strategies	
	3	Manufacturing industries and products, manufacturing operations, product facilities	
2 nd	4	Product / production relationship, basic elements of an automation system	
	5	Advance automation function, level of automation	
	6	Robot anatomy and related attributes, joint and links	
3 rd	7	Common robot configuration, joint drive system	
	8	Sensors in robotics, robot control system, end effectors, processing operation, assembly and inspection, robot programming	
	9	Grippers and tools, applications of industrial robots, material handling	
4 th	10	Processing operation, assembly and inspection, robot programming	
	11	Part families, parts classifications and coding, production flow analysis, cellular Manufacturing- composite part concept	
	12	Part families, parts classifications and coding	
5 th	13	Production flow analysis	
	14	Cellular Manufacturing- composite part concept	
	15	Machine cell design, applications of group technology	
6 th	16	Grouping parts and machines by rank order clustering technique, Arranging machines in a G.T. cell.	
	17	Introduction, FMS components	
	18	flexibility in manufacturing – machine, product, routing	
7 th	19	Operation, types of FMS, FMS layouts	
	20	FMS planning and control issues	

	21	Deadlock in FMS, FMS benefits and applications.	
8 th	22	Introduction, manual process planning	
	23	Computer aided process planning – variant, generative	
	24	Decision logic decision tables, decision tree	
9 th	25	Introduction to artificial intelligence	
	26	Introduction, shop floor control features, major displays	
	27	Major reports, phases of SFC, order release, order scheduling	
10 th	28	Order progress, manufacturing control, methodology, applications	
	29	Shop floor data collections, Types of data collection system	
	30	Data input techniques, automatic data, collection system.	
11 th	31	Introduction, historical, background, basic components of an NC	
	32	Steps in NC, verifications of numerical control machine tool programs	
	33	classification of NC Machine tool	
12 th	34	Basics of motion control and feedback for NC M/C, automatically programmed tools,	
	35	NC part programming, part programming methods,	
	36	Modern machining system ,DNC, adaptive control.	
13 th	37	Functions of AGV, types of AGV	
	38	Safety consideration for AGV	
	39	Design of AGV	
14 th	40	Introduction to storage system, storage system performance	
	41	Storage location strategies, conventional storage method and equipment	
	42	automated storage system, , fixed aisle automated storage/ retrieval systems	
15 th	43	fixed aisle automated storage/ retrieval system,	
	44	Carousel storage systems	
	45	Analysis of storage system	