Lesson Plan

Name of Institute	: Ambala College of Engineering and Applied Research, Devsthali.
Name of the Faculty member	: Mr. Ajay Singh
Discipline	: Applied Sciences and Humanities
Semester	: 3rd
Subject	: Optics and Waves BS – 201A
Lesson Plan Duration	: 15 weeks (from Oct2021 to Dec2021)
Work Load	: L-3

Week	Theory		
	Lecture day	Topic (including assignment/ test)	
1 st	1 st	Waves: Travelling waves, Characteristics of waves	
	2 nd	Mathematical representation of travelling waves	
	3 rd	General wave equation, Phase velocity	
2 nd	4 th	Light source emit wave packets	
	5 th	Wave packet and Bandwidth	
	6 th	Group velocity and real light waves	
3 rd	7 th	Propagation of light waves: Maxwell's equations	
	8 th	Electromagnetic waves and constitutive relations	
	9 th	Wave equation for free-space	
4 th	10 th	Uniform plane waves, Wave polarization	
	11 th	Energy density	
	12 th	The pointing vector and intensity	
5 th	13 th	Radiation pressure and momentum	
	14 th	Light waves at boundaries, Wave incident normally on boundary	
	15 th	Wave incident obliquely on boundary: law of reflection, Snell's law and reflection coefficients	
6 th	16 th	Interference: Principle of Superposition, Conditions for Sustained interference	
	17 th	Young's double slit experiment	
	18 th	Division of wave-front: Fresnel's Biprism and its applications	
7 th	19 th	Sessional-I	
	20 th	Division of amplitude: Interference due to reflected and transmitted light, Wedge-shaped thin film	
	21 st	Newton's rings and its applications	
8 th	22 nd	Michelson Interferometer and its applications	

	23 rd	Diffraction: Types of diffraction, Fraunhofer diffraction at a single slit
	24 th	Plane transmission diffraction grating: theory
9 th	25 th	Secondary maxima and secondary minima
	26 th	Width of principal maxima
	27 th	Absent spectra, overlapping of spectral lines
10 th	28 th	Determination of wavelength, Dispersive power diffraction grating
	29 th	Resolving power of diffraction grating
	30 th	Polarization: Polarization of transverse waves
11 th	31 st	Sessional-II
	32 nd	Plane of polarization, Polarization by reflection, Double refraction
	33 rd	Nicol Prism
12 th	34 th	Quarter and half wave plate
	35 th	Specific Rotation, Laurent's half shade polarimeter
	36 th	Biquartz polarimeter
13 th	37 th	Laser: Stimulated Absorption, Spontaneous and Stimulated Emission
	38 th	Einstein's Coefficients and its derivation
	39 th	Population Inversion, Direct and Indirect pumping
14 th	40 th	Pumping schemes, Main components of Laser
	41 st	Gas lasers (He-Ne, CO2)
	42 nd	Solid state lasers (Ruby, Neodymium)
15 th	43 rd	Solid state lasers (semiconductor)
	44 th	Dye laser, Characteristics of Laser, Applications of Laser
	45 th	Sessional-III

Mr Ajay Singh

Assistant Professor

APS Department

ACE