Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA

Scheme of Studies/Examination

Semester V (w.e.f. session 2021-2022)

S.No	Course No.	Subject	L:T:P	Hours/ Week	Credits		aminatio	n Schedu	le	Duration of Exam
						Major Test	Minor Test	Practica I	Total	(Hrs.)
1	HTM-901A	Universal Human Values II Understanding Harmony	3:0:0	3	3	75	25	0	100	3
2	EC-303LA	Electromagnetic Waves Lab	0:0:2	2	1	-	40	6 0	100	3
3	EC-305A	Computer Organization & Architecture	3:0:0	3	3	75	25	0	100	3
4	EC-307A	Information Theory and Coding	3:0:0	3	3	75	25	0	100	3
5	EC-309A	Digital Signal Processing	3:0:0	3	3	75	25	0	100	3
6	EC-311LA	Digital Signal Processing Lab	0:0:2	2	1	0	40	6 0	100	3
7	ECP*	Program Elective-I	3:0:0	3	3	75	25	0	100	3
8	ECO*	Open Elective-I	3:0:0	3	3	75	25	0	100	3
9	**EC-313A	Industrial Training-II	2:0:0	2	-	-	*100	-	*100	3
10	***MC- 903A	Essence of India Traditional Knowledge	n3:0:0	3	-	100	-	0	100	3
		Total		27	20	550	230	120	900	

^{*} The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

^{**}EC-313A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

^{***}MC-903A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

HTM-901A		Univer	sal Human Va Harmo		erstanding							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3.0	75	25	100	3 Hours					
Purpose	Purpose and motivation for the course, recapitulation from Universal Human Values-I											
Course Out	comes (CO)										
CO 1		Development of a holistic perspective based on self-exploration about themselves (human being),family, society and nature/existence.										
CO 2		•	developing or y and nature	• ,	•	n the hum	an					
CO 3	Strength	ening of se	elf-reflection.									
CO 4	Developr	ment of co	mmitment ar	nd courage	to act.							

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration—what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- 16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- 28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them. Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemed essential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example:

Assessment by

faculty mentor: 5 marks
Self-assessment: 5 marks

Assessment by peers: 5 marks

Socially relevant project/Group Activities/Assignments: 10 marks

Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination

Semester V (w.e.f. session 2020-2021)

S.No	Course No.	Subject	L:T:P	Hours/ Week	Credits	Ex	Duration of Exam (Hrs.)			
						Major Test	Minor Test	Practical	Total	-(1115.)
1	HM-903A	Soft Skill & Interpersonal Communication	3:0:0	3	3	75	25	0	100	3
2	EC-303LA	Electromagnetic Waves Lab	0:0:2	2	1	-	40	60	100	3
3	EC-305A	Computer Organization & Architecture	3:0:0	3	3	75	25	0	100	3
4	EC-307A	Information Theory and Coding	3:0:0	3	3	75	25	0	100	3
5	EC-309A	Digital Signal Processing	3:0:0	3	3	75	25	0	100	3
6	EC-311LA	Digital Signal Processing Lab	0:0:2	2	1	0	40	60	100	3
7	ECP*	Program Elective-I	3:0:0	3	3	75	25	0	100	3
8	ECO*	Open Elective-I	3:0:0	3	3	75	25	0	100	3
9	**EC-313A	Industrial Training-II	2:0:0	2	-	-	*10 0	-	*100	3
10	***MC- 903A	Essence of Indian Traditional Knowledge	3:0:0	3	-	100	-	0	100	3
		Total		27	20	550	230	120	900	

^{*} The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

^{**}EC-313A is a mandatory credit-less course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

^{***}MC-903A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination

	LIST	OF OPEN ELECTIVES (B.TECH. ECE)
SEM	CODE	SUBJECT
V	ECO-1A	Computer Networks
	ECO-2A	Mechatronics
	ECO-3A	Electronic Measurement and Instruments
	ECO-4A	Renewable Energy Resources
		MOOC1

		PROGRAM ELECTIVES (B.TECH. ECE)					
SEM	CODE	SUBJECT					
V	ECP-1A	Probability Theory & Stochastic					
		Processes					
	ECP-2A	Speech and Audio Processing					
	ECP-3A	Introduction to MEMS					
	ECP-4A	Power Electronics					
	ECP-5A	VLSI Technology					

HM-903A			Soft Ski	lls & Inter	personal (Communication						
Lecture	Tutori al	Practical	Total	Time								
3	3 0 0 3 75 25 - 100 3 Hrs.											
A 1 . 1 . 0	Course Outcomes At the end of this course students will demonstrate the ability to											
	•	basic unders										
CO2	Understa	nd the proce	ss of comr	nunication	and speaki	ing						
CO3	CO3 Develop the Personality concepts and its implementation											
CO4	Develop	the basic of	Group Dis	cussion an	d interview	'S						

Communication: Introduction Verbal, Non-Verbal, kinesics, proxemics, chronemics, Types of communication, extra personal communication, intrapersonal communication, intrapersonal communication, mass communication, Creativity in communication, Role of communication, flow of Communication and its need, Persuasive communication and negotiation; Time management in Persuasive communication, Importance of Persuasive Communication

Unit-II

Barriers in the way of communication, noise, intrapersonal barriers, interpersonal barriers, organizational barriers, Extra personal barriers, Basics of communication: importance of communication, process of communication, objectives and characteristics of communication, Communication skills: Accent, Intonation, Phonetics, Speaking skills, Confidence, clarity, Fluency, Quality, pronunciation

Unit-III

Personality Development; what is personality? Role of personality, Heredity, Environment, situation, Basics of personality, Soft skills; Needs and training, Activity in soft skills, Organizational skill; introduction and its need ,basics principles for Organization skills, Stress management; Introduction, Stress at home and office, Stress prevention, analyze the model of stress.

Unit-IV

Group discussion, form of Group discussion, strategy for Group discussion, discussing problems and solution, Oral presentation, introduction, planning, Occasion, Purpose, Modes of delivery, Resume making; Purpose of Resume, Resume design and structure, contents in Resume, types of resume, Job interview, introduction, objective of Interview, types of interview, stages of interview, Face to face interview and campus interview

Text Books:

1. Technical Communication Principles and Practice by Meenakshi Raman and Sangeeta Sharma by Oxford Publication

Reference Books:

- 1. Personality Development and soft skills by Barun K. Mitra, Oxford Publication
- 2. Communication Skills For Engineers by C. Muralikrishna and Sunita Mishra, Pearson Pub.

EC- 305A		(Computer	Organization and	Architecture							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	Time				
(Hrs.)	(Hrs.) (Hrs.)											
3	-	3 75 25 - 100										
Course Outcomes At the end of this course students will demonstrate the ability to CO1 To understand the concept of basics of computer hardware & software												
CO2	To unders	tand the cor	ncept of con	ntrol design & proce	essor design							
CO3	To familiarize with the concept of various memory systems.											
CO4	To familia	rize with th	e concept o	of system organisatio	on.							

Basic Structure of Computer Hardware and Software: Introduction to basic computer architecture, register transfer, bus and memory transfers, arithmetic, logic and shift micro operations. Central Processing Unit: Introduction, general register organization, stack organization, instruction formats, addressing modes, data transfer and manipulation, program control, RISC, Macros and Subroutines.

UNIT-II

Control Design: Micro programmed control, control memory, address sequencing, micro program example, design of control unit, Hardwired Control: design methods, Multiplier Control Unit, CPU Control unit.

Processor Design: Decimal arithmetic unit –BCD adder, BCD subtraction, decimal arithmetic operations, Forms of Parallel processing classification of Parallel structures, Array Processors, Structure of general purpose Multiprocessors.

UNIT-III

Memory Organization:

Memory hierarchy, device characteristics, auxillary memory, associative memory, cache memory, virtual memory, memory management, hardware multiprocessor architectures and their characteristics, interconnection structures, Random access memories: semiconductor RAMS, Serial-access Memories – Memory organization, Main Memory Allocation.

UNIT-IV

System Organization:

Pipeline and Vector Processing: Parallel processing, pipelining, arithmetic pipeline, instruction pipeline, RISC pipeline, vector processing, array processors, Input-output Organization: Peripheral devices, input-output interface, asynchronous data transfer, modes of transfer, priority interrupt, DMA,

Text Books:

- 1. Morris Mano, "Computer System Architecture", PHI.
- 2. J.F. Heys, "Computer Organization and Architecture", TMH.

Reference Books:

1. J. Hennessy and D. Patterson, Computer Architecture A Quantitative Approach, 3rd Ed, Morgan Kaufmann, 2002.

EC-307A	INFORMATION THEORY AND CODING											
Lecture (Hrs.)	Tutorial Practical Major Test Minor Test Total (Hrs.)											
3	25	100	3 Hr.									
Course Outc	omes											
CO1	Acquire knowl	edge to under	rstand the concep	ot of information an	d entropy							
CO2	Ability to analy	yze and under	rstand Shannon's	s theorem for coding	5							
CO3	Foster ability to	Foster ability to identify basic errors Calculation of channel capacity										
CO4	To develop ski	lls to apply co	oding techniques	3								

UNIT – I

Probability, random variables, Probability distribution functions and probability density functions, Expectation, moments, Random Processes, mean and Auto Correlation, Stationary and ergodicity, Information theory: the definition of information, the zero-memory information source, entropy for discrete ensembles; properties of entropy, Shannon's noiseless coding theorem; Encoding of discrete sources,

UNIT-II

Properties of codes: Introduction, types of codes: uniquely decodable codes, instantaneous codes, construction of an instantaneous code, Kraft inequality: statement and discussion and Proof, Markov sources; Shannon's noisy coding theorem and converse for discrete channels; Calculation of channel capacity and bounds for discrete channels; Application to continuous channels.

UNIT - III

Coding information sources: The average length of a code, Shannon's First Theorem, Finding binary compact codes- Huffman codes, Code efficiency and redundancy; Channels and mutual information: Information channels, Binary symmetric channels, Probability relations in a channel, A priori and A posteriori entropies, Mutual information, properties of mutual information, types of channels: Noiseless, deterministic, Cascaded channels, Channel capacity.

UNIT - IV

Channel Coding: Shannon second theorem for Noisy channels, Introduction to error control coding, Types of codes, Maximum Likelihood decoding, Linear block codes, Error detecting and correcting capabilities of a block code, Hamming code, cyclic code, convolutional arithmetic codes.

Text/Reference Books:

- 1. N. Abramson, Information and Coding, McGraw Hill, 1963.
- 2. M. Mansurpur, Introduction to Information Theory, McGraw Hill, 1987.
- 3. R.B. Ash, Information Theory, Prentice Hall, 1970.
- 4. Shu Lin and D.J. Costello Jr., Error Control Coding, Prentice Hall, 1983.

EC-309A				Digita	l Signal Proc	essing					
Lecture (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Credit	Major Test	Minor Test	Practical	Total	Time			
3	-	-	3	75	25	-	100	3			
	Course Outcomes At the end of this course students will demonstrate the ability to										
CO1	Obtain Z-tr	ansformatio	n of discret	e time signal	S						
CO2	Obtain DF	T and FFT of	f discrete ti	me signals							
CO3	Implement structures for different discrete time systems										
CO4	Design of I	FIR and IIR	digital filter	rs for various	applications						

Discrete Transforms: Z- transform and its properties, Inversion of Z-transform, One sided Z- transform and solution of differential equations. Analysis of LTI systems in Z-domain, causality, stability, schur-cohn stability test, relationship between Z-transform and Fourier transform.

Frequency Selective Filters: All pass filters, minimum-phase, maximum-phase and mixed-phase systems, Goertzel algorithm, Chirp Z-transform, applications of Z-Transform.

Unit-II

Frequency Domain Sampling and DFT: DTFT, DFT, properties, Linear filtering using DFT, Frequency analysis of signals using DFT, radix 2 and radix-4 FFT, computation of DFT of real sequences.

Implementation Structures of Discrete Time Systems: Direct form, cascade form, frequency sampling and lattice structures for FIR systems. Direct forms, transposed form, cascade form parallel form. Lattice and lattice ladder structures for IIR systems.

Unit-III

Design of FIR Filters: Characteristics of practical frequency selective filters, types of FIR filters, filter design specifications such as peak pass band ripple, minimum stop band attenuation etc., alternation theorem. Design of FIR filters using windowing method, frequency sampling method and Park-McClellan's method. Design of optimum equiripple FIR filters. Comparison of design methods for FIR filters. Effect of finite register length in FIR filter design.

Unit-IV

Design of IIR Filters: Design of IIR filters from analog filters, Design by approximation of derivatives, Impulse Invariance Method, Bilinear Transformation Method, Least Square Methods. Characteristics of Butterworth, Chebyshev and Elliptical analog filters, Frequency transformations, design of IIR filters in frequency domain.

Text/Reference Books:

- 1. J. G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms And Applications", 4th ed. Prentice Hall.
- 2 A.V. Oppenheim and R. W. Schafer, "Discrete Time Signal Processing", Prentice Hall, 1989.
- 3. S. K. Mitra, "Digital Signal Processing: A computer based approach", McGraw Hill, 2011.
- 4. L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall, 1992.
- 5. J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
- 6. D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss, "Digital Signal Processing", John Wiley & Sons, 1988.

ECP-1A			Probability	Theory &Stock	astic Processes							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	-	-	3	75	25	100	3Hr					
Purpose	To familiarize the students with the basics of Probability Theory & Stochastic Processes											
Course Ou	Course Outcomes											
CO1	Develop ar	n understand	ing to the ba	asic concepts of S	Sets, Probabiliti	ies &Rando	m					
	Variables.											
CO 2	To unders	tand various	distribution	functions &bou	ınds.							
CO 3	To analyze and appreciate various Random Sequences and theorems.											
CO 4	To apply v	arious Rand	om Processe	es &Power Spect	ral Density to r	eal life pro	blems.					

Sets and set operations; Probability space; Conditional probability and Bayes theorem; Combinatorial probability and sampling models. Discrete random variables, probability mass function, probability distribution function, example random variables and distributions; Continuous random variables, probability density function, probability distribution function, example distributions

Unit-II

Joint distributions, functions of one and two random variables, moments of random variables; Conditional distribution, densities and moments; Characteristic functions of a random variable; Markov, Chebyshev and Chernoff bounds

Unit-III

Random sequences and modes of convergence (everywhere, almost everywhere, probability, distribution and mean square); Limit theorems; Strong and weak laws of large numbers, central limit theorem.

Unit-IV

Random process. Stationary processes. Mean and covariance functions. Ergodicity, Transmission of random process through LTI. Power spectral density.

Text Books:

- 1. H. Stark and J. Woods, "Probability and Random Processes with Applications to Signal Processing," ThirdEdition, Pearson Education
- 2. A. Papoulis and S. Unnikrishnan Pillai, "Probability, Random Variables and Stochastic Processes," Fourth Edition, McGraw Hill.

Reference Books:

- 1. K. L. Chung, Introduction to Probability Theory with Stochastic Processes, Springer International,
- 2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Stochastic Processes, UBS Publishers
- 3. S. Ross, Introduction to Stochastic Models, Harcourt Asia, Academic Press.

ECP-2A			SPEE	CCH and AU	DIO PROCESSI	NG							
Lecture (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Credit	Major Test	Minor Test	Total	Time(Hrs)						
3	3 75 25 100 3												
Course Objectives	To enlight	To enlighten the students about the fundamentals of speech and audio processing.											
Course Out		he student sh	ould be abl	e to									
CO1	Mathemat	ically model	the speech	signal									
CO2	Analyze th	ne quality and	properties	of speech sig	nal.								
CO3	Modify an	Modify and enhance the speech and audio signals.											
CO4	To unders	tand various s	speed codin	ig standards.									

Introduction- Speech production and modeling - Human Auditory System; General structure of speech coders; Classification of speech coding techniques – parametric, waveform and hybrid; Requirements of speech codecs –quality, coding delays, robustness.

Speech Signal Processing- Pitch-period estimation, all-pole and all-zero filters, convolution; Power spectral density, periodogram, autoregressive model, autocorrelation estimation.

Unit-II

Linear Prediction of Speech- Basic concepts of linear prediction; LinearPrediction Analysis of non-stationary signals –prediction gain, examples; Levinson-Durbin algorithm; Long term and short-term linear prediction models; Moving average prediction.

Speech Quantization- Scalar quantization-uniform quantizer, optimum quantizer, logarithmic quantizer, adaptive quantizer, differential quantizers; Vector quantization – distortion measures, codebook design, codebook types.

Unit-III

Scalar Quantization of LPC- Spectral distortion measures, Quantization based onreflection coefficient and log area ratio, bit allocation; Line spectral frequency – LPC to LSF conversions, quantization based on LSF.

Linear Prediction Coding- LPC model of speech production; Structures of LPCencoders and decoders; Voicing detection; Limitations of the LPC model.

Unit-IV

Code Excited Linear Prediction-CELP speech production model; Analysis-by-synthesis; Generic CELP encoders and decoders; Excitation codebook search – state-save method, zero-input zerostate method; CELP based on adaptive codebook, Adaptive Codebook search; Low Delay CELP and algebraic CELP. Speech Coding Standards-An overview of ITU-T G.726, G.728 and G.729standards.

Text/Reference Books:

- 1. "Digital Speech" by A.M.Kondoz, Second Edition (Wiley Students Edition), 2004.
- 2. "Speech Coding Algorithms: Foundation and Evolution of Standardized Coders", W.C. Chu, WileyInter science, 2003.

ECP-3A			Introd	luction to MEMS									
Lecture (Hrs.)	Tutorial Practical Major Test Minor Test Total Time Credit (Hrs.)												
3	0												
Course Out	comes	omes											
CO1	Students wil various ME	U	wledge of mathe	ematics, science, a	and enginee	ring to unde	erstand						
CO2	Students be devices.	able to Appred	ciate the underly	ying working pri	nciples of M	EMS and N	IEMS						
CO3	Understandi	Understanding basic principles of bulk micromachining and clean rooms practices											
CO4	Understand	Design and mo	odel of MEM de	evices.									

Introduction: MEMS definition, classification of MEMS, Historical Background, Established applications of MEMS, modern MEMS applications, Miniaturization issues, Micro/Nano Sensors, Actuators and Systems overview, Multidisciplinary nature of MEMS – principles and examples of Micro sensors and micro actuators.

UNIT-II

Scaling laws in miniaturization - scaling advantages and issues, influence of scaling on material properties, scaling in mechanical systems, scaling in fluidic systems, scaling chemical and biological systems, scaling in heat conducting and heat convection.

UNIT-III

Basic MEMS fabrication methods: MEMS Fabrication Methods, Oxidation, Deposition Techniques, Photolithography, Materials for Micromachining, Substrates, additive Films and Materials, Bulk Micromachining, Wet Etching Dry Etching, Surface Micromachining, Fusion Bonding, High-Aspect-Ratio-Micromachining, LIGA, Laser Micromachining, Computer Aided Design, Assembly and System Integration, Multi-Chip Modules, Passivation and Encapsulation,

UNIT-IV

Mechanics of solids in MEMS/NEMS: Stresses, Strain, Hookes's law, Poisson effect, Linear Thermal Expansion, Bending; Energy methods, Overview of Finite Element Method, Modeling of Coupled Electromechanical Systems.

Text/Reference Book:

- 1. G. K. Ananthasuresh, K. J. Vinoy, S. Gopalkrishnan K. N. Bhat, V. K. Aatre, Micro and Smart Systems, Wiley India, 2012.
- 2. S. E.Lyshevski, Nano-and Micro-Electromechanical systems: Fundamentals of Nano-and Microengineering (Vol. 8). CRC press, (2005).
- 3. S. D. Senturia, Microsystem Design, Kluwer Academic Publishers, 2001.
- 4. M. Madou, Fundamentals of Microfabrication, CRC Press, 1997.

ECP-4A			POWEI	R ELECTRONIC	S			
Lecture	Tutorial	Practical	Major Test	Minor Test	Total	Time	Credit	
(Hrs.)	(Hrs.)	(Hrs.)						
3	0	0	75	25	100	3 Hr.	3	
Course Out	Course Outcomes							
CO1	Acquire knowledge about Build and test circuits using power devices such as SCR							
CO2	Ability to analyze Analyze and design controlled rectifier, DC to DC converters, DC to AC inverters							
CO3	Foster ability to Learn how to analyze these inverters and some basic applications							
CO4	To develop sk	tills to build, a	and Design SMI	PS.				

Characteristics of Semiconductor Power Devices: Thyristor, power MOSFET and IGBT: structure, Characteristics, operation, Brief introduction to power devices: TRIAC, MOS controlled thyristor (MCT), Thyristor Triggering circuit, Thyristor commutation circuit, Uses and design of snubber circuits for thyristor, power MOSFETs and IGBT. Fast recovery diodes and schottky diodes.

UNIT-II

Rectifiers types: Controlled and Uncontrolled Rectifiers: Single phase: Study of semi and full bridge converters for R, RL, RLE loads. Analysis of load voltage, load current and derivation of load form factor and ripple factor, Effect of source impedance on the performance of the controlled rectifiers, Analysis of three phase half wave controlled rectifiers with R load, Analysis of three phase half wave controlled rectifiers with R load.

UNIT-III

Choppers: Quadrant operations of Type A, Type B, Type C, Type D and type E choppers, Control strategies for choppers, Detailed analysis of Type A chopper. Step up chopper. Inverters: Types of inverters, operating principle, Single phase half bridge inverter, Single phase full bridge inverter.

UNIT-IV

AC Voltage Controllers: Types of AC voltage controllers: symmetrical and asymmetrical controllers, Principle of phase control, ON-OFF control, Single phase ac voltage controller with R load. Cycloconverters: Principle of cycloconverter operation, step up and step down cycloconverters, Output voltage equation for a cycloconverter, Applications: Switching Power Supplies, SMPS, UPS.

Text /Reference Books:

- 1. Muhammad H. Rashid, "Power electronics" Prentice Hall of India.
- 2. Ned Mohan, Robbins, "Power electronics", edition III, John Wiley and sons.
- 3. P.C. Sen., "Modern Power Electronics", edition II, Chand& Co.
- 4. V.R.Moorthi, "Power Electronics", Oxford University Press.
- 5. Cyril W., Lander," Power Electronics", edition III, McGraw Hill.

ECP-5A	VLSI Technology							
Lecture (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Major Test	Minor Test	Total	Time	Credit	
3	0	0	75	25	100	3 Hr.	3	
Course Out	Course Outcomes							
CO1				ness, growth rate, dge of mathemat		_		
CO2	Students can design and conduct experiments such as oxidation, metallization and analyze growth / deposition rate, thickness etc.							
CO3	Shall be able	e to understand	d system, design	such as CVD re	actor, PVD	chamber et	с.	
CO4	Understandi	ng of fabricati	on sequence of	CMOS and NMO	OS, PMOS	Integrated o	circuits.	

Crystal growth: monolithic and hybrid ICs, crystal growth, Czochralski technique of crystal growth, wafer preparation and specifications, defects, measurements of parameters of crystals, Fabrication steps, Oxidation: Theory of growth of Silicon dioxide layer, oxidation kinetics, Dry, wet and high pressure oxidation, plasma oxidation, properties of oxidation, defects induced due to oxidation.

UNIT-II

Epitaxial process: Epitaxy and its concept, Growth kinetics of epitaxial growth, Low temperature epitaxy, growth chemistry of Si epitaxial layer, apparatus for epitaxial layer, MBE system Diffusion process: Diffusion models of solid, Fick's theory of diffusion, Solution of Fick's law, diffusion parameters measurements, Ion implantation: Scattering phenomenon, range theory, channeling, implantation damage, ion implantation systems, Annealing.

UNIT-III

Lithography: Optical and non-optical lithography, electron, X-ray and ion-beam lithography, contact/proximity and projection printers, alignment. Photoresist and Etching: Types of photoresists, polymer and materials, Etching- Dry & Wet etching, basic regimes of plasma etching, reactive ion etching and its damages, lift-off, and sputter etching.

UNIT-IV

Metallization: Applications and choices, physical vapor deposition, patterning, VLSI process fabrication steps: PMOS, NMOS and CMOS IC technology, Packaging: Package types, packaging design consideration, VLSI assembly technologies. Yield and reliability in VLSI.

SUGGESTED BOOKS:

- 1. S.M. SZE, VLSI Technology, McGraw Hill. 2009, 2nd Edition
- 2. S. K. Gandhi, VLSI Fabrication Principles, Wiley, 2nd edition
- 3. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford 2008,2nd edition
- 4. Sedra & Smith, Microelectronic Circuits 2004, Oxford, 5th edition
- 5. J.D. Plummer, Silicon VLSI Technology: Fundamentals, Practice, and Modeling, Pearson.

ECO-1A			Computer Networks						
Lecture (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Credit	Major Test	Minor Test	Practical	Total	Time	
3	-	_	3	75	25	-	100	3 Hrs	
Purpose	communio model.	To familiarize the students with the concepts of basic computer networks used in communication. Also familiarize the students with the various layers of OSI and TCP/IP model. Course Outcomes							
CO1			cept of basi	cs of compu	iter network	s and physica	al layer& r	nedia.	
CO2		To understand the concept of basics of computer networks and physical layer& media. To understand the concept and processes of data link layer and medium access sublayer.							
CO3		To familiarize with the concept and design issues of network, transport & session layer and presentation layer.							
CO4	To familia	arize with the	concept ar	nd protocols	of applicati	ion layer.			

Unit – I

Introduction: Introduction to Computer Networks, Protocols and standards, Network Models: The OSI Model, TCP/IP protocol suite, Introduction to addressing.

Physical Layer and Media: Guided & Unguided media, Circuit Switching and Packet Switching, The Telephone System, ATM.

Unit-II

The Data Link Layer: Data Link Layer Design issues, Data link control: Framing, Flow & Error control, Noiseless channels, Noisy channels, HDLC, Point to Point protocols.

The Medium Access Sublayer: Aloha Protocols, LAN Protocols; wired LAN's, Wireless LAN.

Unit -III

Network Layer: Forwarding, Flow Control, Error Control, Multicast routing, IPv4 addresses, IPv6 addresses, internetworking, SNMP, ARP

Transport & Session Layer, Presentation Layer: Flow Control and Congestion Control at the Transport Layer, Transmission Control Protocol – Basic Features, TCP Congestion Control, cryptography

Unit-IV

Application Layer: Design issues, file transfer, access and management, electronic mail, WWW & HTTP

Text Books:

- 1. Forouzan B.A, Data Communications and Networking, Tata-Mc-Graw Hill.
- 2. Tanenbaum A.S, Computer Networks, PHI.

Reference Books:

- 1. Stallings W, Data and Computer Communications, PHI.
- 2. Leon Garcia, Computer Networks, Mc Graw Hill

ECO-2A		MECHATRONICS							
Lecture (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Credit	Major Test	Minor Test	Total	Time(Hrs)		
3	-	-	3	75	25	100	3		

Course Outcomes

The Objective of this course is to make the students aware about Mechanical and Electronic Instruments together for different applications. This course will help students to build the fundamental concepts of inter disciplinary problems. At the end of this course the student should be able

CO1	To understand Mechatronics System and its applications.
CO2	To understand the operations of different Sensors and Transducers and their applications.
CO3	To understand the Electrical and Mechanical Actuation Systems operations and their uses.
CO4	To understand the basic structure of PLC and its applications and designing examples of
	Mechatronics Systems.

UNIT-I

INTRODUCTION TO MECHATRONICS: Definition, Evolution, Scope, Mechatronics Design Elements, Examples, and Applications; Measurement Systems; Control Systems: Open and Close Loop Systems, Block Diagram of Feedback Control System.

UNIT-II

TRANSDUCERS AND SENSORS: Transduction Principle, Classification of Transducers, Selection Parameters, Resistive, Inductive, Capacitive, Piezoelectric, Photoelectric, Measurement of Flow and Level; Sensors: LVDT, LMDT, Proximity, Force, Pressure, Pneumatic, Light, Touch and Tactile, Ultrasonic and Voice Recognition etc.

UNIT-III

ACTUATORS: Actuator Types and Application Areas, Electromechanical Actuators, Electrical Actuators: Servo and Stepper Motors; Pneumatic and Hydraulic Actuators, Piezoelectric Actuators, Magnetostrictive actuators, Memory-metal Actuators, Ion-exchange Polymer-metal Composite; Mechanical Actuators: Mechanism, Kinematics Chains, Bearings, Belt Drives, Chains and Chain Drives, Pulleys, Cams and Gears.

UNIT-IV

PLC AND MECHATRONIC SYSTEM DESIGN: Microprocessors, Microcontrollers; PLC: Introduction, Basic Structure, Input/Output Processing, Programming, Mnemonics, Timers, Internal Relays and Counters, Data Handling, Analog Input/Output, Selection of a PLC, Advantages and Uses; Design of Mechatronic Systems: Mechatronics design elements, Embedded system, MEMS, Robotics; Description of Designing a Mechatronic System: Automatic Camera, Washing Machine and List of some other Mechatronic Systems.

Text Books:

- 1. R. K. Rajput, "A Textbook of Mechatronics", S. Chand & Company Pvt. Ltd, 2015.
- 2. Nitaigour Premchand Mahalik, "Mechatronics Principles, Concepts and Applications", Tata McGraw-Hill publishing company Ltd, 2003.
- 3. M.D.Singh & J.G. Joshi, "Mechatronics", PHI Learning Private Limited, 2015.

Reference Books:

- 1 Devdas Shetty & Richard A.Kolk, "Mechatronics System Design", PWS Publishing Company (Thomson Learning Inc.).
- 2 William Bolton, "Mechatronics Electronics Control systems in Mechanical and Electrical Engineering", Prentice Hall.

ECO- 3A		Electronic Measurement and Instruments							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	0	0	3	75	25	100	3 Hr.		
Purpose		To familiarize the students with the concepts of Electronics Measurements like measurement of voltage, current & resistance etc.							
Course O	utcomes								
CO1	Students v bridges	will learn the	techniques	of measure	ment of resis	tance using	different		
CO2	AC Bridge students	AC Bridges & Voltage Indicating & Recording Devices will be introduced to the							
CO3		Students will be able to recognize the functioning of different Analog & Digital Instruments							
CO4	Transduce	ers & Data A	cquisition (Systems will	be introduce	ed to the stu	dents		

Measurement and Error: Functional elements and generalized configuration of a measuring Instrument, Characteristics of instruments, errors in measurements and their statistical analysis.

Measurement of Resistance: Wheat stone bridge, Carey-Foster Bridge, Kelvin double bridge, Measurement of Insulation resistance.

Unit-II

Bridges: Maxwell Inductance bridge. Maxwell Inductance Capacitance Bridge, Anderson's Bridge, Hay's Bridge, De-Sauty's Bridge, Schering's bridge and Wein's bridge.

Voltage Indicating and Recording Devices: Analog voltmeters and Potentiometers, Self balancing potentiometer and X-Y recorders, Galvanometers - Oscillographs, Cathode - Ray Oscilloscopes, Magnetic Tape Recorders.

Unit-III

Electronic Instruments: Wave analyzer, Distortion meter: Q-meter. Measurement of Op-Amp parameters.

Digital Instruments: Digital Indicating Instruments, Comparison with analog type, digital display methods, digital methods of time and frequency measurements, digital voltmeters.

Unit-IV

Transducers: Classification of Transducers, Strain Gauge, Displacement Transducers - Capacitive Transducers, LVDT, Piezo-electric Transducers, Temperature Transducers – resistance thermometer, Thermocouples and Thermistors, Liquid level measurement Low pressure (vacuum) measurement.

Data Acquisition Systems: A to D and D to A converters, Analog and Digital Data Acquisition Systems, Multiplexing, Spatial Encoders, Telemetry.

Text Book:

1. A Course in Electrical and Electronics Measurements and Instrumentation: A.K. Sawhney; Dhanpat Rai & Sons.

Reference Books:

1. Electronics Instrumentation and Measurement Techniques: Cooper W.D & Helfrick A.D.; PHI Doeblin E.O., Measurement Systems: Application & Design, Mc Graw Hill.

ECO-4A			Renev	wable Energy R	Resources				
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time		
3	-	-	3	75	25	100	3 Hour		
Course Ou	Course Outcomes								
CO 1	CO 1 To understand the energy demand of world, nation and available resources to fulfill the demand								
CO 2	To know about the conventional energy resources and their effective utilization								
CO 3	To acquire	the knowled	ge of mode	rn energy conve	ersion techno	logies			
CO 4	To be able to understand and perform the various characterization techniques of fuels								
CO5	To be able to identify available nonconventional (renewable) energy resources and techniques to utilize them effectively.								

Introduction: Energy demand of world and country and gap analysis, Fossil fuel based systems, Impact of fossil fuel based systems, Non conventional energy – seasonal variations and availability, Renewable energy – sources and features, Hybrid energy systems. Distributed energy systems and dispersed generation (DG).

Unit-II

Solar thermal systems: Solar radiation spectrum, Radiation measurement, Technologies, Applications, Heating, Cooling, Drying, Distillation, Power generation; Costing: Life cycle costing (LCC), Solar thermal system

Solar Photovoltaic systems ,Operating principle, Photovoltaic cell concepts ,Cell, module, array, Series and parallel connections, Maximum power point tracking, Applications ,Battery charging, Pumping , Lighting,Peltier cooling , Costing: Life cycle costing ,Solar PV system

Unit-III

Microhydel: Operating principle, Components of a microhydel power plant, Types and characteristics of turbines, Selection and modification, Load balancing, Costing: Life cycle costing –Microhydel Wind; Wind patterns and wind data, Site selection, Types of wind mills, Characteristics of wind generators, Load matching, Life cycle costing - Wind system LCC.

Unit-IV

Biomass: Learning objectives, Operating principle, Combustion and fermentation, Anaerobic digester, Wood gassifier, Pyrolysis, Applications, Bio gas, Wood stoves, Bio diesel, Combustion engine, Life cycle costing - Biomass system LCC

Hybrid Systems, Need for Hybrid Systems, Range and type of Hybrid systems, Case studies of Diesel-PV, Wind-PV, Microhydel-PV, Biomass-Diesel systems, electric and hybrid electric vehicles

Suggested Books:

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2. Mittal K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003
- 3. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi. 2004
- 4. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi, 2004.

EC-		Electromagnetic Waves Lab							
303LA									
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time		
				Test	Test				
		3	1.5	40	60	100	3 Hour		
Purpose	To give	To give the students an idea about the study and analysis of components used in							
		Microwave Engineering							
			Course C	Outcomes					
CO1	Students wi	ill learn the	steps to anal	lyze electric j	field behavid	or.			
CO2	Students wi	ill be able to	characteriz	e standing w	ave ration a	nd reflection	ı		
	Coefficient.	Coefficient.							
CO3	Students wi	Students will learn the steps to analyze types of waveguide.							
CO4	Students wi	ill be able to	find the unk	nown imped	ances in a t	ransmission	line.		

List of Experiments:

- 1. Measurement of Electric Field between Parallel Conductors.
- 2. To Determine Electric Field Pattern between Two Circular Electrodes.
- 3. Experimentally determine the standing wave ration and reflection Coefficient in a transmission line.
- 4. Measurement of Dielectric Constant.
- 5. Design & Characterization of Rectangular Waveguide for dominant mode using HFSS.
- 6. Experimentally determine the frequency & Wavelength in a rectangular waveguide working in TE_{10} mode using microwave bench.
- 7. Design & Characterization of Circular Waveguide using HFSS.
- 8. Design & Characterization of Microstrip Line using HFSS.
- 9. To measure unknown impedance with Smith Chart.
- 10. Desgin & Characterization of Microstrip line using simulation software.

EC-311LA			Dig	ital Signal Pro	ocessing Lab			
Lecture (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Credit	Major Test	Minor Test	Practical	Total	Time
-	-	2	1	-	40	60	100	3
Course Outcomes								
At the end of	this course	students will	demonstrat	e the ability to	1			
CO1	Plot differ	ent discrete t	ime signals	}				
CO2	Verify the aliasing effects							
CO3	Design digital FIR filters for various applications							
CO4	Design di	gital IIR filter	rs for vario	us applications	}			

List of Experiments

- 1. Write a program to plot the following functions: a) impulse function b) unit step c) unit ramp d) exponential and e) sinusoidal
- 2. Write a program to plot real part, imaginary part, magnitude and phase spectra of an exponential function.
- 3. Study the aliasing effect by using a sinusoidal signal. Show the plots of continuous time signal, sampled signal and reconstructed signals by using subplot.
- 4. Write a program to compute and plot the convolution of two signals.
- 5. Define a function to compute the Z-transform of a finite length signal.
- 6. Verify the properties of Discrete Fourier Transform (DFT).
- 7. Study of different window functions available for design of FIR filters.
- 8. Design of FIR filters by using windowing method.
- 9. Design of equiripple FIR filter.
- 10. Study of magnitude and phase response of Butterworth, Chebyshev and Elliptic filters.
- 11. Design of IIR filters by using different analog filter approximation method.

MC-903A		ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	0	100	-	100	3 Hrs.			
Purpose	To understand the values of Indian tradition.									
Course Outcomes										
CO1	Students will I	Students will be able to understand the concept of Traditional knowledge and its importance								
CO2	Students will I	be able to know	the need and	l importance of prot	ecting traditional k	nowledge.				
CO3	Students will I	Students will be able to know the various enactments related to the protection of traditional knowledge.								
CO4	Students will I knowledge.	Students will be able to understand the concepts of Intellectual property to protect the traditional								

INTRODUCTION TO TRADITIONAL KNOWLEDGE Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, the physical and social contexts in which traditional knowledge develop, the historical impact of social change on traditional knowledge systems. Indigenous Knowledge (IK), characteristics, traditional knowledge vis-à-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge vis-à-vis formal knowledge.

UNIT-II

PROTECTION OF TRADITIONAL KNOWLEDGE

Protection of traditional knowledge: The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

LEGAL FRAMEWORK AND TK

A: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); B: The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016. Geographical indicators act 2003

UNIT-III

TRADITIONAL KNOWLEDGE AND INTELLECTUAL PROPERTY

Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Certain non IPR mechanisms of traditional knowledge protection, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge, global legal FORA for increasing protection of Indian Traditional Knowledge.

UNIT-IV

TRADITIONAL KNOWLEDGE IN DIFFERENT SECTORS:

Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK. 139

Text Books:

- 1. Environmental Studies- Deswal and Deswal. Dhanpat Rai and Co.
- 2. Environmental Science and Engineering Anandan, P. and Kumaravelan, R. 2009. Scitech Publications (India) Pvt. Ltd., India.
- 3. Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- 4. Environmental Science- Botkin and Keller. 2012. Wiley, India

Reference Books:

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination

Semester VI (w.e.f. session 2020-2021)

S. No.	o. Course No. Subject		L:T:P	Hours/ Week	Credits	Examination Schedule (Marks)			(Marks)	Durati on of
						Major Test	Minor Test	Practical	Total	Exam (Hrs.)
1	HM-901A	Organizational Behavior	3:0:0	3	3	75	25	0	100	3
2	EC-302A	Control System Engineering	3:0:0	3	3	75	25	0	100	3
3	EC-304LA	Control System Engineering Lab	0:0:3	3	1.5	-	40	60	100	3
4	EC-306A	Verilog HDL	3:0:0	3	3	75	25	0	100	3
5	EC-308LA	Verilog HDL Lab	0:0:3	3	1.5	-	40	60	100	3
6	EC-310LA	Mini Project/Electronic Design Workshop	0:0:4	4	2	-	40	60	100	3
7	ECP*	Program Elective-II	3:0:0	3	3	75	25	0	100	3
8	ECO*	Open Elective-II	3:0:0	3	3	75	25	0	100	3
		Total		25	20	375	245	180	800	

^{*} The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section. Note: All the students have to undergo 4 to 6 weeks Industrial Training after 6th semester which will be evaluated in 7th semester.

Bachelor of Technology (Electronics & Communication Engineering) (Credit Based) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination

	LIST	OF OPEN ELECTIVES (B.TECH. ECE)
SEM	CODE	SUBJECT
VI	ECO-5A	Data Structures
	ECO-6A	Multimedia Communication
	ECO-7A	Consumer Electronics
	ECO-8A	Transducers and Their Applications
		MOOC2

	LIST OF PROGRAM ELECTIVES (B.TECH. ECE)								
SEM	SEM CODE SUBJECT								
VI	ECP-6A	Antennas and Propagation							
	ECP-7A	CMOS Design							
	ECP-8A	Bio-Medical Electronics							
	ECP-9A	Scientific Computing							

HM-901A			ORGANIZA	TIONAL BI	EHAVIOUR	(VI Semes	ter)
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)
3	0	0	3	75	25	100	3
Purpose:	To make the stud- managerial skills.		vith the basic co	ncepts of orgai	nizational culture	and behavior f	for nurturing their
Course Outo	comes						
CO 1	An overview abou	t organizational b	ehavior as a disc	cipline and und	erstanding the co	oncept of indivi	dual behavior.
CO 2	Understand the cleadership.	oncept and impor	tance of person	ality, emotions	and its importar	nce in decision	making and effective
CO 3	Enabling the student and resolving con		out the importa	nce of effective	e motivation and	l its contribution	on in group dynamics
CO 4	Understand how communication.	to overcome or	ganizational str	ess by mainta	aining proper o	rganizational d	culture and effective

Introduction to Organizational Behavior: Concept and importance of Organizational Behavior, Role of Managers in OB, Foundations or Approaches to Organizational Behavior, Challenges and Opportunities for OB.

Foundation of individual behavior: Biographical characteristics, concept of Abilities and Learning , Learning and Learning Cycle, Components of Learning, concept of values and attitude, types of attitude, attitude and workforce diversity

UNIT-II

Introduction to Personality and Emotions: Definition and Meaning of Personality, Determinants of Personality, Personality Traits Influencing OB, Nature and Meaning of Emotions, Emotions dimensions, concept of Emotional intelligence

Perception and individual decision making: Meaning of perception, factors influencing perception, Rationaldecision- making process, concept of bounded rationality. Leadership- Trait approaches, Behavioral approaches, Situational approaches, and emerging approaches to leadership.

UNIT-III

Motivation: concept and theories of Motivation, theories of motivation-Maslow, Two Factor theory, Theory X and Y, ERG Theory, McClelland's Theory of needs, goal setting theory, Application of theories in Organizational Scenario, linkage between MBO and goal setting theory, employee recognition and involvement program.

Foundations of Group Behavior and conflict management: Defining and classifying of Groups, stages of group development, Informal and Formal Groups – Group Dynamics, Managing Conflict and Negotiation, a contemporary perspective of intergroup conflict, causes of group conflicts, Managing intergroup conflict through Resolution.

UNIT-IV

Introduction to Organizational Communication: Meaning and Importance of Communication process, importance of Organizational Communication, Effective Communication, Organizational Stress: Definition and Meaning, Sources and Types of Stress, Impact of Stress on Organizations, Stress

Management Techniques.

Introduction to Organization Culture- Meaning and Nature of Organization Culture, Types of Culture, Managing Cultural Diversity, Managing Change and Innovation – Change at work, Resistance to change, A model for managing organizational change.

Text Books:

- 1. Colquitt, Jason A., Jeffery A. LePine, and Michael Wesson. Organizational Behavior: Improving Performance and Commitment in the Workplace. 5thed. New York: McGraw-Hill Education, 2017.
- 2. Hitt, Michael A., C. Chet Miller, and Adrienne Colella. Organizational Behavior. 4th ed. Hoboken, NJ: John Wiley

Reference Books:

- 1. Robbins, Stephen P., and Timothy Judge. Organizational Behavior. 17th ed. Harlow, UK: Pearson Education
- 2. Stephen P. Robins, Organisational Behavior, PHI Learning / Pearson Education, 11th edition, 2008.

EC-302A		Control System Engineering (6 th Semester)											
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time						
				Test	Test								
3	0	0	3	75	25	100	3 Hours						
Purpose	The purpose of this course is to create awareness about the various types of control systems with the techniques to analyze them so that the learner is able to mathematically design and evaluate the conditions for which a control system can provide stable output with improved performance.												
CO1		l be able to de em through b					odels of a						
CO2	Learner can time domain		conditions for	r which a syst	em can work	under stable	conditions in						
CO3	Learner will in frequency	l know about y domain.	easier graphic	cally methods	to evaluate t	he conditions	of stability						
CO4		l able to apply stable system					proach to						

Introduction: The Control system-Open loop & Closed loop, servomechanism, Stepper motor. Mathematical Models of Physical Systems: Differential equation of physical systems, Transfer Function, Block Diagram Algebra, Signal Flow-Graphs, Mason's Formula & its application. Feedback Characteristics of Control Systems: Feedback and Non-Feedback systems, Effects of Feedback on sensitivity (to parameter variations), Stability, Overall gain etc.

UNIT-II

Time Response Analysis: Standard test signals, Time response of first order and second order systems, Steady-State Errors and Error Constants, Design Specification of second-order- systems. Stability: The concept of stability, necessary conditions for stability, Hurwitz Stability Criterion, Routh Stability Criterion, Relative Stability Analysis. The Root Locus Technique: The Root Locus Concept, Construction /development of Root loci for various systems, Stability considerations. Proportional, Integral and Derivative Controllers.

UNIT-III

Frequency Response & Stability Analysis: Correlation between Time and Frequency response, Polar Plots, Nyquist plots, Bode Plots, Nyquist Stability criterion, Gain margin & Phase margin, relative stability using Nyquist Criterion, frequency response specifications.

UNIT-IV

Compensation of Control Systems: Necessity of Compensation, Phase Lag compensation, Phase Lag Compensation, Phase Lag Lead Compensation, Feedback Compensation. State Variable Analysis: Concept of State, State Variable and State Model, State Models for Linear Continuous Time Systems, Diagonalization, Solution of state equations, Concept of Controllability and Observability.

Text Book: Control System Engg.: I. J. Nagrath & M.Gopal; New Age India.

Reference Books:

1. Automatic Control Systems: B.C. Kuo; PHI.

2. Modern Control Engg: K. Ogata; PHI.

3. Control Systems: Principles & Designing: Madan Gopal; TMH.

EC-306A		Verilog HDL											
Lecture (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Credit	Major Test	Minor Test	Total	Time(Hrs)						
3	-	-	3	75	25	100	3						
Course Objectives	levels of	To familiarize the students with the conventions of the Verilog HDL programming, algorithmic levels of abstraction for modelling digital hardware systems, the concept of test-benches to create testing behavioral environments for simulation based verification.											
				Course Outco	mes								
At the end of	of this cour	se the studer	nt should be	able to									
CO1	To under	stand the cor	structs and	conventions of	the Verilog HDL	programming	<u>z</u> .						
CO2		stand the stru lling digital l			el (RTL), and alg	orithmic level	ls of abstraction						
CO3	To design	n and modell	ing of comb	oinational and se	equential digital s	ystems							
CO4	To apply based ver		of test-benc	hes to create tes	sting behavioral e	nvironments f	For simulation						

Introduction: Introduction, conventional approach to digital design, VLSI design, ASIC design flow, Role of HDL, Conventional Data flow, ASIC data flow, Verilog as HDL, Levels of Design Description, Concurrency, Simulation and Synthesis, Functional Verification, System Tasks, Programming Language Interface (PLI), Module, Simulation and Synthesis Tools, Test Benches. **Language constructs and conventions:** Introduction, Keywords, Identifiers, White Space Characters,

Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters, Memory, Operators, System Tasks.

Unit-II

Gate level modelling: Introduction, AND Gate Primitive, Module Structure, Other Gate Primitives, Illustrative Examples, Tri-State Gates, Array of Instances of Primitives, Additional Examples, Design of Flip-flops with Gate Primitives, Delays, Strengths and Contention Resolution, Net Types, Design of Basic Circuits.

Behavioralmodelling: Introduction, Operations and Assignments, Functional Bifurcation, Initial Construct, Always Construct, Examples, Assignments with Delays, Wait construct, Multiple Always Blocks, Designs at Behavioral Level, Blocking and Non-blocking Assignments, The case statement, Simulation Flow, if and ifelse constructs, assign-deassign construct, repeat construct, for loop, the disable construct, while loop, forever loop, parallel blocks, force-release construct, Event.

Unit-III

Modelling at data flow level: Introduction, Continuous Assignment Structures, Delays and Continuous Assignments, Assignment to Vectors, Operators, Additional Examples.

Switch level modelling: Introduction, Basic Transistor Switches, CMOS Switch, Bi-directional Gates, Time Delays with Switch Primitives, Instantiations with Strengths and Delays, Strength Contention with Trireg Nets.

Unit-IV

Functions, tasks, and user defined primitives: Introduction, Function, Tasks, User- Defined Primitives (UDP), FSM Design (Moore and Mealy Machines).

System tasks, functions, and compiler directives: Introduction, Parameters, Path Delays, Module Parameters, System Tasks and Functions, File-Based Tasks and Functions, Compiler Directives, Hierarchical Access, General Observations.

Text Books:

- 1. T. R. Padmanabhan, B. Bala Tripura Sundari (2004), Design through Verilog HDL, Wiley & SonsEducation, IEEE Press, USA.
- 2. J. Bhaskar (2003), A Verilog Primier, 2nd edition, BS Publications, India.

Reference Books:

- 1. Samir Palnitkar (2013), Verilog HDL, Pearson India.
- 2. Stephen. Brown, ZvonkoVranesic (2005), Fundamentals of Logic Design with Verilog, Tata McGraw

Hill, India.

3. Charles H. Roth (2004), Digital Systems Design using VHDL, Jr. Thomson Publications, India.

EC-308LA		Verilog HDL Lab											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Practical	Total	Time					
0	0	0 3 1.5 0 40 60 100 3 Hour											
CO1	To describe	, design, simu	late, and syr	nthesize circu	its using the	Verilog hardv	vare						
CO2	To design a	nd modelling	of combinati	ional and sec	quential digit	al system.							
CO3	To develop	program code	es for synthe	sis-friendly c	combination	al and sequent	ial logic.						
CO4	To understa complex sys		ced features	of Verilog H	DL and be al	ole to write op	otimized co	des for					

List of Experiments:

- 1. Write a Program to implement logic gates.
- 2. Write a Program to implement half-adder.
- 3. Write a Program to implement Full-adder.
- 4. Write a Program to implement 4 bit addition/subtraction.
- 5. Write a Program to implement a 3:8 decoder.
- 6. Write a Program to implement an 8:1 mulltiplexer.
- 7. Write a Program to implement an 1:8 demultiplexer.
- 8. Write a Program to implement 4 bit comparator.
- 9. Write a Program to implement Mod-10 up counter.
- 10. Write a Program to perform serial to parallel transfer of 4 bit binary number.
- 11. Write a program to perform parallel to serial transfer of 4 bit binary number
- 12. Write a program to implements 8 bit ALU containing 4 arithmetic & 4 logic operation.

EC-304LA			Control Sy	ystem Engin	eering Lab							
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time					
				Test	Test							
		3	1.5	40	60	100	3 Hour					
Purpose	problems a	To make students capable to design solutions for Control System engineering problems and design system components or processes that meet the specified needs of modern automated engineering industries.										
	Course Outcomes											
CO1		vill be able t ing MATLA		ne response	analysis of a	a second ord	er control					
CO2		vill be able t ntal results u		g, Lead, Lead AB.	d-Lag comp	ensators and	verify					
CO3	Analyze to	Analyze toque- speed characteristics of DC and AC servomotors.										
CO4	Analyze a Nyquist pl		stability of t	he system th	rough Root	Locus, Bode	e plot and					

List of Experiments:

- 1. Using MATLAB obtain time response of a second order system in case of under damped, over damped and critically damped systems.
- 2. To design a passive RC lead compensating network for the given specifications and to obtain its frequency response.
- 3. To design a passive RC lag compensating network for the given specifications and to obtain its frequency response.
- 4. To obtain torque speed characteristics of AC servo motor.
- 5. To obtain torque speed characteristics of DC servo motor.
- 6. To determine frequency response of a second order system and evaluation of Frequency domain specifications.
- 7. To simulate a DC position control system and hence to find the step response using MATLAB.
- 8. Obtain the phase margin and gain margin for a given transfer function by drawing bode plots and verify the same using MATLAB.
- 9. To obtain Root locus of a given T. F. and hence finding breakaway point, intersection point on imaginary axis and to draw the Nyquist plot for the given transfer function using MATLAB.
- 10. To digitally simulate the time response characteristics of Linear SISO systems using state variable formulation.
- 11. Experiment to draw the frequency response of a given lead-lag compensating network.

ECP-6A				Antennas & Pro	pagation						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test		Total	Time			
3	0	0	3	75	25		100	3 Hrs.			
Purpose	To familiarize the students with: Antennas used for various applications, performance parameters of antenna, methods of analysis of antenna, and different ways of propagating the signal.										
CO1	To Unders	stand the stru	cture and pro	operties of variou	s antennas.						
CO2	To undersi	understand the performance parameters of antenna.									
CO3	To design	antenna of re	quired speci	fications.							
CO4	To undersi	tand the diffe	rent ways of	signal propagatio	on.						

Fundamental concept: Physical concept of radiation, Retarded potential, Radiation pattern, near- and far-field regions. **Antenna Parameters:** Radiation Resistance, Gain, Directive Gain, Power Gain, Directivity, Efficiency, Beam width, Effective Height, Effective Aperture, Bandwidth and Antenna Temperature. **Radiation from Wires:** Radiation from Hertzian Dipole, Short Dipole, Monopole Antenna, Folded Dipole Antenna and Half Wave Dipole.

Unit-II

Antenna Arrays: Uniform Linear Arrays - Broadside Arrays, Endfire Arrays. Analysis of arrays of 2 Isotropic Sources - Different Cases, Analysis of arrays of N Isotropic Sources - Different Cases, Principle of Pattern Multiplication, Binomial Array, Chebyshev Array. TV Transmission & Reception Antennas: Turnstile Antennas, Yagi-Uda antennas. Standard Antennas: Loop Antenna (Rectangular & Circular), Helical Antenna, Biconical Antenna.

Unit-III

Aperture & Slot Antennas: Radiation from Rectangular Apertures, Uniform and Tapered Aperture, Horn antenna, Reflector Antenna, Cassegrain and Gregorian Feeding Structures, Rectangular Slot Antenna. Broadband Antennas: Huygens' Principle, The frequency independent concept: Rumsey's principle, Frequency Independent Planar Log Spiral Antenna, Frequency independent conical spiral antenna, Log periodic antenna, Lens Antenna.

Microstrip/Patch Antennas: Basic configurations of patch antennas: Rectangular, Circular. Different Feeding Techniques. Method to Analyze Patch antenna: Transmission Line Model.

Unit-IV

Propagation of Radio Waves: Introduction, Ground Wave Propagation, Space Wave Propagation and Sky Wave Propagation: Virtual Height, Critical Frequency, Maximum Usable Frequency (MUF) – Skip Distance, Fading, Multi Hop Propagation, Duct Propagation, Troposcatter Propagation, Flat Earth and Curved Earth Concept,.

REFERENCES:

- 1. J. D. Kraus, Antennas, McGraw Hill, 1988.
- 2. C.A. Balanis, Antenna Theory Analysis and Design, John Wiley, 1982.
- 3. Antenna & Wave Propagation- K.D. Prasad, Satya Parkashan.
- 3. R.E. Collin, Antennas and Radio Wave Propagation, McGraw Hill, 1985.
- 4. I.J. Bahl and P. Bhartia, Micro Strip Antennas, Artech House, 1980.
- 6. A.R.Harish, M.Sachidananda, Antenna and Wave Propagation, Oxford University Press.

ECP-7A			CMOS I	Design						
Lecture	Tutorial	Test Test								
3	0	0 0 75 25 100 3 Hr.								
		Course	Outcomes							
CO1	Student wi	ll be able to analy	yze MOS tra	ansistor ch	aracterist	tics				
CO2	Student wi	ll be able to desig	gn CMOS ir	vertor of s	specific c	haracteristics				
CO3	Student wi equation	Student will be able to design combinational CMOS circuit of given boolean equation								
CO4	Student wi	ll be able to desig	gn sequentia	ıl CMOS c	ircuit of	given specification				

Introduction:Overview of VLSI Design Methodologies, VLSI Design flow, Design hierarchy, VLSI Design styles.

MOS Transistor: MOS structure, MOS system under external bias, structure and operation of MOSFET, C-V characteristics.

Unit- II

MOS Invertors: Introduction, resistive load invertor, invertor with n-type MOSFET load, CMOS invertor: circuit operation, noise margin, design of invertor, power and area consideration.

Unit-III

Combinational MOS Logic: nMOS logic circuits with depletion nMOS load, CMOS logic circuits, complex logic circuits, CMOS pass gates

Unit-IV

Sequential MOS Logic circuits: Behaviour of bistable elemens, SR latch circuit, clocked latch and flip flop, CMOS D Latch and edge triggered flip flop

Text Books:

1. S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design, Third Edition, MH, 2002.

Reference Books:

- 1. N. Weste, K. Eshraghian and M. J. S. Smith, Principles of CMOS VLSI Design : A Systems Perspective, Second Edition (Expanded), AW/Pearson, 2001.
- 2.J. P. Uyemura, CMOS Logic Circuit Design, Kluwer, 1999.

ECP-				Biomedi	cal Electron	nics					
8A											
Lecture	Tutorial	Practical	Credit	Major	Minor	Practical	Total	Time			
(Hrs.)	(Hrs.)	(Hrs.)		Test	Test						
3	-	-	- 3 75 25 - 100 3								
	Course Outcomes										
At the end	of this cour	se students	will demor	nstrate the ab	oility to						
CO1	Uno	derstand and	explain th	e concept of	biomedical	signals, ele	ctrodes an	ıd			
				Instrumer	ntation						
CO2	Unde	Understand and explain the physiological transducers and recording systems									
CO3	Unde	rstand and e	xplain bior	nedical reco	rders and pa	tient monito	oring syste	ems			
CO4	Unde	erstand and	explain car	diac pacema	akers, defibr	illator and p	atient safe	ety			

Introduction: Role of technology in medicine, physiological systems of the body, sources of biomedical signals, basic medical instrumentation and their performance requirements, intelligent medical instrumentation systems, consumer and portable medical equipment, implantable medical devices, role of engineers in healthcare facilities.

Bioelectric Signals and Electrodes: Origin of bioelectric signals, recording electrodes, silver- silver chloride electrodes, electrodes for ECG, electrodes for EMG, electrical conductivity of electrode jellies and creams, microelectrodes.

UNIT-II

Physiological Transducers: Definition, classification and performance characteristics of transducers, displacement, position and motion transducers, pressure transducers, transducers for body temperature measurement, photoelectric transducers, optical fiber sensors, biosensors, smart sensors.

Recording System: Basic recording system, general considerations for signal conditioners, preamplifiers, sources of noise in low level measurements, biomedical signal analysis and processing techniques, the main amplifier and driver stage, writing systems.

UNIT-III

Biomedical Recorders: Electrocardiograph, vectorcardiograph (Vcg), phonocardiograph (Pcg), digital stethoscope, electroencephalograph (Eeg), electromyograph.

Patient Monitoring Systems: System concepts, cardiac monitor, bedside patient monitoring systems, central monitors, measurement of heart rate, measurement of temperature, measurement of respiration rate, catheterization laboratory instrumentation, ambulatory monitoring instruments.

UNIT-IV

Cardiac Pacemakers and Defibrillators: Need for cardiac pacemaker and defibrillator, external pacemakers, implantable pacemakers, pacing system analyzer, DC defibrillator, implantable defibrillators, types of defibrillators, defibrillator analyzer.

Patient Safety: Electric shock hazards, leakage currents, safety codes for electromedical equipment, electrical safety analyzer.

Text/Reference Books:

- 1. R S Khandpur: Handbook of biomedical instrumentation, 3rd ed., McGraw Hill Education
- 2. Joseph D. Bronzino: The biomedical engineering handbook, 2nd ed., CRCPress.

ECP-				Scientif	ic Computi	ng		
9A						_		
Lecture	Tutorial	Practical	Credit	Major	Minor	Practical	Total	Time
(Hrs.)	(Hrs.)	(Hrs.)		Test	Test			
3	-	-	3	75	25	-	100	3
			Cour	se Outcome	S			
At the end	of this cou	rse students	will demor	strate the ab	oility to			
CO1					nal linear alg			atrix
		decompositi	ons technic	ques to solve	e the probler	ns of linear	algebra	
CO2	To unders	tand the con	cept of Sci	entific comp	outing and w	ill be able t	o find the	solution
			of line	ar and non Î	inear equation	ons		
CO3	To lear	n the concep	t of Vector	functions, p	oartial deriva	tives, gradi	ent and ta	ngent
		_		plane	es			_
CO4	To unders	stand the var	ious nume	rical techniq	ues for solvi	ing differen	tial equati	ons and
		use N	MATLAB t	o visualize	the solutions	practically	•	

Introduction to Computational Linear Algebra

Fundamental algorithms in computational linear algebra with relevance to all science concentrators. Basic linear algebra and matrix decompositions (Cholesky, LU, QR, etc.), round-off errors and numerical analysis of errors and convergence. Iterative methods and conjugate gradient techniques. Computation of eigenvalues and eigenvectors, and an introduction to least squares methods

Unit -II

Introduction to Scientific Computing

Numerical computations; Includes instruction for programming in MATLAB. Applications solution of linear equations (with vectors and matrices) and nonlinear equations (by bisection, iteration, and Newton's method), interpolation, and curve-fitting, difference equations, iterated maps, numerical differentiation and integration, and differential equations.

Unit –III

Vector Functions; Derivatives,tangent vector velocity,acceleration,arc length of space curve,curvature and normal vectors,functions of two or more variables,limits and continuity,partial derivatives,directional derivatives,gradient and tangent planes,second derivative ,maxima,minima,sable point

Unit-IV

Introduction to Numerical Solution of Differential EquationsFundamental numerical techniques for solving ordinary and partial differential equations. Overview of techniques for approximation and integration of functions Differential equations, First Order differential equations, variables separable form, solution of first order linear equation, second and higher order equations, solution of constant coefficient second order equation, Solution of two-point boundary value problems, introduction to methods for solving linear partial differential equations.

Text/Reference Books:

- Calculus and Analytical Geometry (9th Edition) Thomas and Finney Pearson Education
 Calculus (5th Edition) James Stewart
 Advanced Engineering Mathematics (8th Edition) Erwin Kreyszig John Willey and Sons

- 4. Linear Algebra (2nd edition) Hoffman and Kunz Prentice Hall International
- 5. Linear Algebra Peter D.Lax
- 6. Differentials Equations with applications and Historical notes. Simmons G.F

ECO-5A			Data Str	ructures							
Lecture (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Major Test	Minor Test	Total	Time	Credit				
3	-	- 75 25 100 3 Hr.									
		Course Outcomes									
	Student wil	ll be able to deter	rmine the ti	ne comple	exity of va	rious operations of	on				
CO1	arrays										
CO2	Student wil	ll be able to selec	et appropria	te data stru	cture for	given application					
CO3	Student wil	udent will be able to create link list and apply various operations.									
CO4	Student will graphs	ll be able to evalu	uate the trav	ersal of bi	nary trees	and represent					

Introduction: Concept of Data Structures, Design of suitable algorithm, algorithm analysis. **Arrays:** 1-D arrays: Traversal, Selection, Searching, Insertion, Deletion and Sorting. Multi-D arrays, representation of arrays in physical memory, application of arrays

Unit-II

Stacks and Queues: Stacks: Stack operations, Application of Stacks, Queues: operations, circular queue, priority queue, deque

Pointers: Introduction, pointer variable, pointers and arrays, array of pointers, pointers and structures

Unit-III

Linked Lists: Introduction, Operations: Creation, Traversal, Searching, Insertion and Deletion. Circular and Doubly linked list, linked stacks and queues.

Unit-IV

Trees: Basic terminology, binary trees, representation of binary trees: linear and linked, traversal of binary trees

Graphs: graph terminology, representation of graphs: array based, linked list based, set based.

Text Books:

- 1. Data Structures using C by A. K. Sharma , Pearson Publication
- 2. Theory & Problems of Data Structures by Jr. Symour Lipschetz, Schaum's outline by TMH.

Reference Books:

- 1. Data Structures using C by A. M. Tenenbaum, Langsam, Moshe J. Augentem, PHI Pub
- 2.Data Structures and program design in C by Robert Kruse, PHI Expert Data Structures with C by R.B. Patel

ECO-]	Multimed	ia Communication									
6A		- · ·	- T11										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
(Hrs.)	(Hrs.)	(Hrs.)											
3	-	-	3	75	25	100	3 Hrs.						
PO	То	To familiarize the students with the concepts of basic multimedia communication											
	S	systems and	various co	ompression algorithm	ns of text, audio, im	age and vide	eo.						
			Course O	utcomes (CO)									
CO1	Students v	vill understa	and the co	ncept of multimedia	communication syst	em along wi	ith its						
	application	ns and netw	orks in de	tail.									
CO2	Students	will be able	to learn th	ne concept of compre	ession in detail. They	y will unders	stand the						
	techniques	s of text and	l image co	mpression.									
CO3	In this out	come stude	nts will be	well prepared of au	dio and video compr	ession.							
CO4	Students v	vill understa	and the co	ncept internet, its app	plications and CBIR	systems							

Multimedia Communication: Introduction, Multimedia networks: Telephone networks, Data networks, Television Networks, ISDN, B-ISDN. Multimedia Applications: Interactive applications over the internet and Entertainment applications.

Digitization Principles, Representation of Text, Images, Audio and Video.

UNIT-II

Text Compression: Compression principles, Text Compression techniques: Static Huffman Coding, Dynamic Huffman Coding, Arithmetic Coding, Lempel Ziv and Lempel Ziv welsh coding. **Image Compression**: Graphics interchange format, Tagged image file format, Joint Photographic Experts Group (JPEG).

UNIT-III

Audio Compression: Differential Pulse Code Modulation, Adaptive Differential PCM, Adaptive Predictive coding, linear predictive coding and MPEG audio coders,

Video Compression: Video Compression principles, Frame types, Motion estimation and compensation, Implementation Schematics of I, P and B frames, H.261, H.263.

UNIT-IV

Multimedia Synchronization: Basic definitions and requirements Time stamping and Pack architecture. **Internet Applications:** Domain name System, Electronic Mail, Internet Telephony, Content Based Image Retrieval Systems

Text Books:

1. Multimedia communications: Fred Halsall; Pearson Education Asia. Reference Books:

- 1. Multimedia Systems" by Ralf Steinmetz and Klara Nahrstedt
- 2. Multimedia Systems, Standards, and Networks" by A. Puri and T. Chen

ECO-7A	Consumer Electronics									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	75	25	100	3			
		C	ourse Outc	omes		•				
CO1	To understand fundamentals of Monochrome and Colour TV systems.									
CO2	To understand television receivers and digital TV systems.									
CO3	To understand audio fundamentals and systems.									
CO4	To maintain various electronic home appliances.									

Monochrome TV Systems and Colour TV Systems: Monochrome picture signal transmission and reception, scanning process, aspect ratio, persistence of vision and flicker, interlace scanning, picture resolution, Composite video signal, vestigial sideband transmission. Colour theory, Grassman's Law, hue, brightness, saturation, luminance and chrominance, Different types of TV camera tube, channel bandwidth.

UNIT-II

Television Receivers: Monochrome and colour picture tube, receiver controls, remote control, Television standards: PAL, SECAM, NTSC.

Digital TVs: working principle of HDTV, Principle and working of LCD and LED TV, Block diagram and working principle of OLED.

UNIT-III

Audio Fundamentals: Basic characteristics of sound signal: level and loudness, pitch, frequency response, fidelity and linearity, Reverberation, Microphone: working principle, characteristics, Types: carbon, condenser, crystal, electrostatic. Loudspeakers: working principle, Types: electrostatic, dynamic, permanent magnet.

UNIT-IV

FAX, Microwave Oven: types, single chip controllers, Washing Machine: wiring diagram, electronic controller for washing machine, types of washing machine, Air conditioner and Refrigerators: Components features, types and applications, Digital camera, ATM.

TEXT BOOKs:

- R.R. Gulati "Modern Television practices", New Age International Publication (P) Ltd. New Delhi Year 2011, latest edition.
- S.P. Bali., "Consumer Electronics", Pearson Education, 2010, latest edition.

REFERENCES:

- R Bali and S.P. Bali "Audio video systems: principle practices & troubleshooting", Khanna Book Publishing Co. (P) Ltd., 2010Delhi, India, latest edition.
- R.G. Gupta "Audio video systems", Tata Mc graw Hill, New Delhi, India 2010, latest edition.
- Jerry Whitaker & Blair Benson "Mastering Digital Television", McGraw-Hill Professional, 2010, latest edition.

ECO-8A	Transducers & Its Applications										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
3		-	3	75	25	100	3				
Purpose	Understanding the structural and functional principles of sensors and transducers used for various physical and nonelectric quantities and how to use them to measure these quantities.										
Course Ou	ıtcomes										
CO 1	Explain the principles of operation of the sensor parameters and generators										
CO 2	Interpretation of the measurement results by using transducers.										
CO 3	Development of measurement schemes for different non electrical quantities										
CO 4	Assimilating knowledge about the implementation of sensors and transducers.										

Definition of transducer. Advantages of an electrical signal as out-put. Basic requirements of transducers, Primary and Secondary Transducer, Analog or digital types of transducers. Resistive, inductive, capacitive, piezoelectric, photoelectric and Hall Effect tranducers.

Unit-II

Measurement of Pressure – Manometers, Force summing devices and electrical transducers **Measurement of Temperature** – Metallic resistance thermometers, semi conductor resistance sensors (Thermistors), thermo-electric sensors, pyrometers.

Unit-III

Measurement of Displacement – Potentiometric resistance type transducers, inductive type transducers, differential transformer (L.V.D.T), capacitive transducers, Hall effect devices, strain gage transducers. **Measurement of Velocity** – variable reluctance pick up, electromagnetic tachometers, photoelectric tachometer, toothed rotor tachometer generator.

Unit-IV

Measurement of Force – Strain-gage load cells, pneumatic load cell, LVDT type force transducer. **Measurement of Torque** – Torque meter, torsion meter, absorption dynamometers, inductive torque transducer, digital methods.

Suggested Books:

- 1. B.C. Nakra, K.K. Chaudhry, "Instrumentation Measurement and Analysis," Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 2. Thomas G. Beckwith etc. all, "Mechanical Measurements (International Student Edition), Addison-Wesley Longman, Inc. England.
- 3. A.K. Sawhney, "A Course in Electrical and Electronic Measurements and Instrumentation," Dhanpat Rai & Sons, Delhi-6