SRSMT Scholarship Test-2023 Syllabus

Physics:

Unit 1: Kinematics

Frame of reference. Motion in a straight line: Position-time graph, speed and velocity. Uniform and nonuniform motion, average speed and instantaneous velocity Uniformly accelerated motion, velocity-time, position-time graphs, relations for uniformly accelerated motion. Scalars and Vectors, Vector addition and Subtraction, Zero Vector, Scalar and Vector products, Unit Vector, Resolution of a Vector. Relative Velocity, Motion in a plane, Projectile Motion, Uniform Circular Motion.

Unit 2: Laws of motion

Force and Inertia, Newton's First Law of motion; Momentum, Newton's Second Law of motion; Impulse; Newton's Third Law of motion. Law of conservation of linear momentum and its applications, Equilibrium of concurrent forces. Static and Kinetic friction, laws of friction, rolling friction. Dynamics of uniform circular motion: Centripetal force and its applications.

Unit 3: Work, energy and power

Work done by a constant force and a variable force; kinetic and potential energies, work energy theorem, power. Potential energy of a spring, conservation of mechanical energy, conservative and non-conservative forces; Elastic and inelastic collisions in one and two dimensions.

Unit 4: Rotational motion

Centre of mass of a two-particle system, Centre of mass of a rigid body; Basic concepts of rotational motion; moment of a force, torque, angular momentum, conservation of angular momentum and its applications; moment of inertia, radius of gyration. Values of moments of inertia for simple geometrical objects, parallel and perpendicular axes theorems and their applications.

Unit 5: Gravitation

The universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth. Kepler's laws of planetary motion. Gravitational potential energy; gravitational potential. Escape velocity. Orbital velocity of a satellite. Geo-stationary satellites.

Unit 6: Thermodynamics

Thermal equilibrium, zeroth law of thermodynamics, concept of temperature. Heat, work and internal energy. First law of thermodynamics. Second law of thermodynamics: reversible and irreversible processes. Carnot engine and its efficiency.

Unit 7: Kinetic Theory Of Gases

Equation of state of a perfect gas, work done on compressing a gas. Kinetic theory of gases - assumptions, concept of pressure. Kinetic energy and temperature: rms speed of gas molecules; Degrees of freedom, Law of equipartition of energy, applications to specific heat capacities of gases; Mean free path, Avogadro's number.

Unit 8: Oscillations And Waves

Periodic motion - period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion (S.H.M.) and its equation; phase; oscillations of a spring -restoring force and force constant; energy in S.H.M. - kinetic and potential energies; Simple pendulum - derivation of expression for its time period; Free, forced and damped oscillations, resonance. Wave motion. Longitudinal and transverse waves, speed of a wave. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect in sound.

Unit 9: Electrostatics

Electric charges: Conservation of charge, Coulomb's law-forces between two point charges, forces between multiple charges; superposition principle and continuous charge distribution. Electric field: Electric field due to a point charge, Electric field lines, Electric dipole, Electric field due to a dipole, Torque on a dipole in a uniform electric field. Electric flux, Gauss's law and its applications to find field due to infinitely long uniformly charged straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell. Electric potential and its calculation for a point charge, electric dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges in an electrostatic field. Conductors and insulators, Dielectrics and electric polarization, capacitor, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, Energy stored in a capacitor.

Unit 10: Currrent Electricity

Electric current, Drift velocity, Ohm's law, Electrical resistance, Resistances of different materials, V-I characteristics of Ohmic and nonohmic conductors, Electrical energy and power, Electrical resistivity, Colour code for resistors; Series and parallel combinations of resistors; Temperature dependence of resistance. Electric Cell and its Internal resistance, potential difference and emf of a cell, combination of cells in series and in parallel. Kirchhoff's laws and their applications. Wheatstone bridge, Metre bridge. Potentiometer - principle and its applications.

Unit 11: Magnetic Effects Of Current And Magnetism

Biot - Savart law and its application to current carrying circular loop. Ampere's law and its applications to infinitely long current carrying straight wire and solenoid. Force on a moving charge in uniform magnetic and electric fields. Cyclotron. Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel current-carrying conductors-definition of ampere. Torque experienced by a current loop in uniform magnetic field; Moving coil galvanometer, its current sensitivity and conversion to ammeter and voltmeter. Current loop as a magnetic dipole and its magnetic dipole moment. Bar magnet as an equivalent solenoid, magnetic field lines; Earth's magnetic field and magnetic elements. Para-, dia- and ferro- magnetic substances. Magnetic susceptibility and permeability, Hysteresis, Electromagnets and permanent magnets.

Unit 12: Electromagnetic Waves

Electromagnetic waves and their characteristics. Transverse nature of electromagnetic waves. Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, Xrays, gamma rays). Applications of e.m. waves.

Reflection and refraction of light at plane and spherical surfaces, mirror formula, Total internal reflection and its applications, Deviation and Dispersion of light by a prism, Lens Formula, Magnification, Power of a Lens, Combination of thin lenses in contact, Microscope and Astronomical Telescope (reflecting and refracting) and their magnifying powers. Wave optics: wave front and Huygens' principle, Laws of reflection and refraction using Huygen's principle. Interference, Young's double slit experiment and expression for fringe width. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes, Polarisation, plane polarized light; Brewster's law, uses of plane polarized light and Polaroids.

Unit 13: Dual Nature Of Matter And radiation

Dual nature of radiation. Photoelectric effect, Hertz and Lenard's observations; Einstein's photoelectric equation; particle nature of light. Matter waves-wave nature of particle, de Broglie relation. Davisson Germer experiment.

Unit 14: Atoms And Nuclei

Alpha-particle scattering experiment; Rutherford's model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes, isobars; isotones. Radioactivity-alpha, beta and gamma particles/rays and their properties; radioactive decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission and fusion.

Chemistry: Physical Chemistry

Unit 1: Some Basic Concepts in Chemistry

Matter and its nature, Dalton's atomic theory; Concept of atom, molecule, element and compound; Physical quantities and their measurements in Chemistry, precision and accuracy, significant figures, S.I. Units, dimensional analysis; Laws of chemical combination; Atomic and molecular masses, mole concept, molar mass.

Unit 2: States of Matter

Classification of matter into solid, liquid and gaseous states.

Gaseous State:

Measurable properties of gases; Gas laws - Boyle's law, Charle's law, Graham's law of diffusion, Avogadro's law, Dalton's law of partial pressure; Concept of Absolute scale of temperature; Ideal gas equation; Kinetic theory of gases (only postulates); Real gases, deviation from Ideal behaviour, compressibility factor and van der Waals equation.

Solid State:

Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea); Bragg's Law and its applications; Unit cell and lattices, packing in solids (fcc, bcc and hcp lattices), voids, calculations involving unit cell parameters, imperfection in solids; Electrical, magnetic and dielectric properties.

Unit 3: Atomic Structure

Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of hydrogen atom, Bohr model of hydrogen atom - its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr's model; Dual nature of matter, de-Broglie's relationship, Heisenberg uncertainty principle. Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features; various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance; shapes of s, p and d - orbitals, electron spin and spin quantum number; Rules for filling electrons in orbitals – aufbau principle, Pauli's exclusion principle and Hund's rule, electronic configuration of elements(only upto Atomic Numbers 30), extra stability of half-filled and completely filled orbitals.

Unit 4: Chemical Bonding and Molecular Structure

Kossel - Lewis approach to chemical bond formation, concept of ionic and covalent bonds. Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy. Covalent Bonding: Concept of electronegativity, Fajan's rule, dipole moment; Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules. Quantum mechanical approach to covalent bonding: Valence bond theory - Its important features, concept of hybridization involving s, p and d orbitals; Resonance. Molecular Orbital Theory - Its important features, LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of homonuclear diatomic molecules, concept of bond order, bond length and bond energy.

Unit 5: Chemical Thermodynamics

Fundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes. First law of thermodynamics - Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity; Hess's law of constant heat summation.

Unit 6: Solutions

Different methods for expressing concentration of solution - molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult's Law – Ideal and non-ideal solutions, vapour pressure - composition, plots for ideal and non-ideal solutions; Colligative properties of dilute solutions - relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and

osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, Van't Hoff factor and its significance.

Unit 7: Electrochemistry

Electrochemical cells - Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half - cell and cell reactions, emf of a Galvanic cell and its measurement; Nernst equation and its applications; Relationship between cell potential and Gibbs' energy change; Dry cell and lead accumulator; Fuel cells.

Unit 8: Chemical Kinetics

Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure and catalyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first order reactions, their characteristics and half - lives, effect of temperature on rate of reactions – Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).

Inorganic Chemistry

Unit 9: Classificaton of elements & Unit 11: Classificaton of elements and periodicity in properties Modem periodic law and present form of the periodic table, s, p, d and f block elements, periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity.

Unit 10: Hydrogen

Position of hydrogen in periodic table, isotopes, preparation, properties and uses of hydrogen; Physical and chemical properties of water and heavy water; Hydrogen as a fuel.

Unit 11: S - Block elements (alkali and alkaline earth metals)

Group - 1 and 2 Elements

General introduction, electronic configuration and general trends in physical and chemical properties of elements, anomalous properties of the first element of each group, diagonal relationships. Preparation and properties of some important compounds - sodium carbonate and sodium hydroxide; Industrial uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg and Ca.

Unit 12: P - Block Elements

Group - 13 to Group 18 Elements

General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group. Group wise study of the p – block elements

Group – 13

Preparation, properties and uses of boron and aluminium; properties of diborane, aluminium chloride and alums.

Group – 14

Allotropes of carbon, tendency for catenation; Structure & properties of silicates, and zeolites.

Group – 15

Properties and uses of nitrogen and phosphorus; Allotropic forms of phosphorus; Preparation, properties, structure and uses of ammonia, nitric acid, Structures of oxides and oxoacids of phosphorus.

Group – 16

Preparation, properties, structures and uses of ozone; Allotropic forms of sulphur; Preparation, properties, structures and uses of sulphuric acid.

Group – 17

Preparation, properties and uses of hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens.

Group – 18

Occurrence and uses of noble gases.

Unit 13: D and F – Block Elements

Transition Elements

General introduction, electronic configuration, occurrence and characteristics, general trends in properties of the first row transition elements - physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties and uses of K2Cr2O7 and KMnO4. Inner Transition Elements Lanthanoids - Electronic configuration, oxidation states and lanthanoid contraction. Actinoids - Electronic configuration and oxidation states.

Unit 14: Co-ordination Compounds Transition Elements

Introduction to co-ordination compounds, Werner's theory; ligands, co-ordination number, denticity, chelation; IUPAC nomenclature of mononuclear co-ordination compounds, isomerism; Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).

Organic Chemistry

Unit 15: Purification and Unit 19: Purification and Characterisation of Organic Compounds

Qualitative analysis - Detection of nitrogen, sulphur, phosphorus and halogens. Quantitative analysis (basic principles only) - Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus. Calculations of empirical formulae and molecular formulae; Numerical problems in organic quantitative analysis.

Unit 16: Some Basic Principles of Organic Chemistry

Tetravalency of carbon; Shapes of simple molecules - hybridization (s and p); Classification of organic compounds based on functional groups: - C = C - and those containing halogens, oxygen, nitrogen and sulphur; Homologous series; Isomerism - structural and stereoisomerism. Nomenclature (Trivial and IUPAC) Covalent bond fission - Homolytic and heterolytic: free radicals, carbocations and carbanions; stability of carbocations and free radicals, electrophiles and nucleophiles. Electronic displacement in a covalent bond - Inductive effect, electromeric effect, resonance and hyperconjugation.

Unit 17: Hydrocarbons

Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions. Alkanes - Conformations: Sawhorse and Newman projections (of ethane); Mechanism of halogenation of alkanes. Alkenes - Geometrical isomerism; Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff's and peroxide effect); Ozonolysis and polymerization.

Alkynes - Acidic character; Addition of hydrogen, halogens, water and hydrogen halides; Polymerization. Aromatic hydrocarbons - Nomenclature, benzene - structure and aromaticity; Mechanism of electrophilic substitution: halogenation, nitration, Friedel – Craft's alkylation and acylation.

Unit 18: Organic Compounds Containing Halogens

Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions. Alkanes - Conformations: Sawhorse and Newman projections (of ethane); Mechanism of halogenation of alkanes. Alkenes - Geometrical isomerism; Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff's and peroxide effect); Ozonolysis and polymerization. Alkynes - Acidic character; Addition of hydrogen, halogens, water and hydrogen halides; Polymerization. Aromatic hydrocarbons - Nomenclature, benzene - structure and aromaticity; Mechanism of electrophilic substitution: halogenation, nitration, Friedel – Craft's alkylation and acylation.

Unit 19: Organic Compounds Containing Oxygen

General methods of preparation, properties, reactions and uses. Alcohols, Phenols and Ethers Alcohols: Identification of primary, secondary and tertiary alcohols; mechanism of dehydration. Phenols: Acidic nature, electrophilic substitution reactions: halogenation, nitration and sulphonation, Reimer - Tiemann reaction. Ethers: Structure. Aldehyde and Ketones: Nature of carbonyl group;Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones; Important reactions such as – Nucleophilic addition reactions (addition of HCN, NH3 and its derivatives), Grignard reagent; oxidation; reduction (Wolff Kishner and Clemmensen); acidity of - hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction; Chemical tests to distinguish between aldehydes and Ketones. Carboxylic acids Acidic strength and factors affecting it.

Unit 20: Organic Compounds Containing Nitrogen

General methods of preparation, properties, reactions and uses. Amines: Nomenclature, classification, structure, basic character and identification of primary, secondary and tertiary amines and their basic character. Diazonium Salts: Importance in synthetic organic chemistry.

Unit 21: Chemistry in Everyday Life

Chemicals in medicines - Analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamins - their meaning and common examples. Chemicals in food - Preservatives, artificial sweetening agents - common examples. Cleansing agents - Soaps and detergents, cleansing action.

Biology

Unit-1: Reproduction in Organisms

Reproduction, a characteristic feature of all organisms for continuation of species; modes of reproduction – asexual and sexual reproduction; asexual reproduction – binary fission, sporulation, budding, gemmule formation, fragmentation; vegetative propagation in plants.

Unit-2: Sexual Reproduction in Flowering Plants

Flower structure; development of male and female gametophytes; pollination – types, agencies and examples; outbreeding devices; pollen-pistil interaction; double fertilization; post fertilization events – development of endosperm and embryo, development of seed and formation of fruit; special modes-apomixis, parthenocarpy, polyembryony; Significance of seed dispersal and fruit formation.

Unit-3: Human Reproduction

Male and female reproductive systems; microscopic anatomy of testis and ovary; gametogenesis – spermatogenesis and oogenesis; menstrual cycle; fertilisation, embryo development upto blastocyst formation, implantation; pregnancy and placenta formation (elementary idea); parturition (elementary idea); lactation (elementary idea).

Unit-4: Reproductive Health

Need for reproductive health and prevention of Sexually Transmitted Diseases (STDs); birth control – need and methods, contraception and medical termination of pregnancy (MTP); amniocentesis; infertility and assisted reproductive echnologies – IVF, ZIFT, GIFT (elementary idea for general awareness).

Unit-5: Principles of Inheritance and Variation

Heredity and variation: Mendelian inheritance; deviations from Mendelism – incomplete dominance, codominance, multiple alleles and inheritance of blood groups, pleiotropy; elementary idea of polygenic inheritance; chromosome theory of inheritance; chromosomes and genes; Sex determination – in humans, birds and honey bee; linkage and crossing over; sex linked inheritance – haemophilia, colour blindness; Mendelian disorders in humans –thalassemia; chromosomal disorders in humans; Down's syndrome, Turner's and Klinefelter's syndromes.

Unit-6: Molecular Basis of Inheritance

Search for genetic material and DNA as genetic material; Structure of DNA and RNA; DNA packaging; DNA replication; Central dogma; transcription, genetic code, translation; gene expression and regulation – lac operon; genome and human and rice genome projects; DNA fingerprinting.

Unit-7: Evolution

Origin of life; biological evolution and evidences for biological evolution (paleontology, comparative anatomy, embryology and molecular evidences); Darwin's contribution, modern synthetic theory of evolution; mechanism of evolution – variation (mutation and recombination) and natural selection with examples, types of natural selection; Gene flow and genetic drift; Hardy – Weinberg's principle; adaptive radiation; human evolution.

Unit-8: Human Health and Diseases

Pathogens; parasites causing human diseases (malaria, dengue, chickengunia, filariasis, ascariasis, typhoid, pneumonia, common cold, amoebiasis, ring worm) and their control; Basic concepts of immunology – vaccines; cancer, HIV and AIDS; Adolescence – drug and alcohol abuse.

Unit-9: Strategies for Enhancement in Food Production

Improvement in food production: Plant breeding, tissue culture, single cell protein, Bio fortification, Apiculture and Animal husbandry.

Unit-10: Microbes in Human Welfare

In household food processing, industrial production, sewage treatment, energy generation and microbes as biocontrol agents and bio fertilizers. Antibiotics; production and judicious use.

Unit-11: Biotechnology – Principles and processes

Genetic Engineering (Recombinant DNA Technology).

Unit-12: Biotechnology and its Application

Application of biotechnology in health and agriculture: Human insulin and vaccine production, stem cell technology, gene therapy; genetically modified organisms – Bt crops; transgenic animals; biosafety issues, bio piracy and patents.

Unit-13: Organisms and Populations

Organisms and environment: Habitat and niche, population and ecological adaptations; population interactions – mutualism, competition, predation, parasitism; population attributes – growth, birth rate and death rate, age distribution.

Unit-14: Ecosystem

Ecosystems: Patterns, components; productivity and decomposition; energy flow; pyramids of number, biomass, energy; nutrient cycles (carbon and phosphorous); ecological succession; ecological services – carbon fixation, pollination, seed dispersal, oxygen release (in brief).

Unit-15: Biodiversity and its Conservation

Concept of biodiversity; patterns of biodiversity; importance of biodiversity; loss of biodiversity; biodiversity conservation; hotspots, endangered organisms, extinction, Red Data Book, biosphere reserves, national parks, sanctuaries and Ramsar sites.

Unit-16: Environmental Issues

Air pollution and its control; water pollution and its control; agrochemicals and their effects; solid waste management; radioactive waste management; greenhouse effect and climate change; ozone layer depletion; deforestation; any one case study as success story addressing environmental issue(s).

English

Grammar: Agreement, Time and Tense, Parallel construction, Relative pronouns, Determiners, Prepositions, Modals, Adjectives, Voice, Transformation, Question tags, Phrasal verbs.

Vocabulary: Synonyms, Antonyms, Odd Word, One Word, Jumbled letters, Homophones, Spelling, Contextual meaning, Analogy.

Reading Comprehension: Content/ideas, Vocabular, Referents, Idioms/Phrases, Reconstruction (rewording).

Composition: Rearrangement, Paragraph Unity, Linkers/Connectives.