Bachelor of Technology in Mechanical Engineering (Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination

Semester I (w.e.f. session 2018-2019)

	Cauraa			Hauma/			Examinat	ion Schedule	(Marks)	Duration
S.No.	Course No./Code	Subject	L:T:P	Hours/ Week	Credits	Major Test	Minor Test	Practical	Total	of exam (Hours)
1A	BS-119A	Introduction to Electromagnetic Theory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-135A	Multi-variable Calculus & Linear Algebra	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	Electromagnetics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester. Induction Program (Three weeks duration) is a part of scheme of first year in 1st semester for all branches.

Bachelor of Technology Mechanical Engineering (Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination

Semester II (w.e.f. session 2018-2019)

	O a server Mar I			House			Examination	on Schedule	(Marks)	Duration
S.No.	Course No./ Code	Subject	L:T:P	Hours/ Week	Credits	Major Test	Minor Test	Practical	Total	of exam(Ho urs)
1A	BS-119A	Introduction to Electromagnetic theory	3:1:0	4	4	75	25	0	100	3
1B	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105A	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101A	English	2:0:0	2	2	75	25	0	100	3
3	BS-136A	Calculus & Ordinary Differential Equations	3:1:0	4	4	75	25	0	100	3
4A	ES-109A	Engineering Graphics& Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111LA	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141A	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101A	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-121LA	Electromagnetics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103LA	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107LA	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103LA	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113LA	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. marked B in one particular semester.

BS-119/	A	Int	roduction	to Electr	omagnetic	Theory				
L	T	T P		Major	Minor	Total	Time			
				Test	Test					
3	1	-	4	75	25	100	3h			
Purpose				f electror	nagnetic th	neory to	the students for			
	application	is in Engineeri	ng field.							
			Course (Outcomes						
CO 1	Introduce	the basic conce	epts of Ele	ctrostatio	cs in vacuui	n.				
CO 2	Introduce	Introduce the basic concepts of Magnetostatics in vacuum.								
CO 3	Discuss electrostatics and magnetostatics in linear dielectric medium.									
CO 4 Basics of Maxwell's equations and electromagnetic waves.										

Unit - I

Electrostatics in Vacuum: Calculation of Electric Field: Coulomb's law, Continuous charge distribution; Divergence and Curl of Electrostatic Fields: Field lines, flux, Gauss's law, Applications of Gauss's law; Electrostatic Potential: Comments on potential, Poisson's and Laplace's Equation, the potential of a localized charge distribution; Electrostatic Boundary Conditions; Work and Energy in Electrostatics: the work done to move a charge, the energy of a point and continuous charge distribution.

Unit - II

Electrostatics in a Linear Dielectric Medium: Polarization: dielectrics, induced dipoles, alignments of polar molecules; The field of a Polarized Object: bound charges and its physical interpretation; The Filed Inside a Dielectric; The Electric Displacement: Gauss's law in the presence of dielectrics, A deceptive parallel, Boundary conditions; Linear Dielectrics: Susceptibility, Permittivity, dielectric constant, Boundary value problems with linear dielectrics, Energy in dielectric systems, Forces in dielectrics.

Unit - III

Magnetostatics: The Lorentz Force Law: magnetic fields, magnetic forces, currents; Biot- Savart law, Divergence and Curl of magnetic field, Magnetic Vector Potential: vector potential, magnetostatic boundary conditions, multiple expansion of vector potential.

Magnetostatics in a linear magnetic: Magnetization: Effect of magnetic field on atomic orbits; The Field of a Magnetized Object: Bound currents, Physical interpretation of bound currents; The Auxiliary Magnetic Field: Ampere's law in magnetized materials, A deceptive parallel, Boundary conditions; Linear and Nonlinear Media: magnetic susceptibility and permeability, ferromagnetism.

Unit - IV

Faraday's law: Electromotive Force: Ohm's law, Motional emf; Electromagnetic Induction: Faraday's law, The induced electric field, inductance, energy in magnetic fields.

Maxwell's Equations: Electrodynamics before Maxwell, How Maxwell fixed Ampere's law, Maxwell's equations, Maxwell's equations in matter.

Electromagnetic Waves: Electromagnetic Waves in Vacuum: the wave equation for electric and magnetic field; Electromagnetic Waves in Matter: propagation in linear media.

Suggested Books:

- 1. David J. Griffiths, Introduction to Electrodynamics, Pearson Education.
- 2. Halliday and Resnick, Physics
- 3. W. Saslow, Electricity, Magnetism and Light

BS-121L	A		Ele	ctromagnetics	Lab				
L	T	P	Credit	Practical	Minor	Total	Time		
					Test				
-	-	3	1.5	30	20	50	3h		
Purpos	e To give t	To give the practical knowledge of handling the instruments.							
	Course Outcomes								
CO	To make the	o make the students familiar with the experiments related with Electromagnetic							
	Theory.								

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 2. To study induced e.m.f. as a function of velocity of magnet.
- 3. To study the growth and decay of current in a LR circuit using magnetic core inductor.
- 4. To find the coefficient of self-inductance by Rayleigh's method.
- 5. To find the coefficient of mutual inductance of two coils.
- 6. To determine the magnetic induction field between the pole pieces of an electromagnet.
- 7. To study Bio-Savart's law.
- 8. To study the dependency of magnetic field on coil diameter and number of turns.
- 9. To investigate the equipotential liens of electric fields.
- 10. To draw the equipotential lines of bar electrode.
- 11. To draw the equipotential lines for ring electrode.
- 12. Verification of Farady and Lenz's law of induction by measuring the induced voltage as function of time.
- 13. Measurement of induced voltage impulse as a function of the velocity of magnet.
- 14. To determine the dielectric constant of different dielectric materials.
- 15. To measure the spatial distribution of the magnetic field between a pair of identical coils in Helmholtz arrangement.
- 16. To investigate the spacing between coils at which magnetic field is uniform and to measure its spatial distribution.

Suggested Books:

- 1. C. L. Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, Pragati Prakashan.

BS-101A		Chemistry									
L	T	T P Credit Major Minor Total Time Test Test									
3	1	-	4	75	25	100	3h				
Purpose	To fan	niliarize the st	udents wit	th basic an	d applied co	ncept in c	chemistry				
CO1	An ins	ight into the a	tomic and	molecular	structure						
CO2	Analy	Analytical techniques used in identification of molecules									
CO3	To un	To understand Periodic properties									
CO4	To un	derstand the s	patial arra	ngement o	of molecules	3					

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N₂, O₂, CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy(basic concept). Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H_2O , NH_3 , PCl_5 , SF_6 , CCl_4 , $Pt(NH_3)_2Cl_2$

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule (paracetamol and Aspirin)

Suggested Books:

- 1) University chemistry, by B. M. Mahan, Pearson Education
- 2) Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins
- 6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA			Che	mistry Lab			
L	T	P	Credit	Practical	Minor	Total	Time
					Test		
-	-	3	1.5	30	20	50	3h

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCl solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCl solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: Atleast 9 experiments to be performed from the list.

ES-			Progra	mming for	Problem So	olving						
105A												
L	T	P	Credit	Major	Minor	Total	Time					
				Test	Test							
3	-	-	3	75	25	100	3h					
Purpos	To	To familiarize the students with the basics of Computer System and C										
e				Progran	nming							
			Cou	rse Outcor	nes							
CO 1	Describe	the over	rview of (Computer	System a	nd Levels	of Programming					
	Language	S.										
CO 2	Learn to t	ranslate t	he algorithr	ns to progr	ams (in C l	anguage).						
CO 3		Learn description and applications of conditional branching, iteration and										
		recursion.										
CO 4	To use ar	rays, poin	ters and str	uctures to	formulate a	lgorithms	and programs.					

UNIT - I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT - II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators. Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT - III

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT - IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. Subrata Saha, Subhodip Mukherjee: Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy: Programming in ANSI C,TMH Education.
- 5. Pradip Dey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. Forouzan Behrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India...
- 8. Yashwant Kanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" Dhanpat Rai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES-			Programn	ning for Pro	blem Solvi	ing Lab							
107LA		T D Credit Practice Minor Total Time											
L	T	1 Credit Hactica Minor Hotal Hine											
				l	Test								
-	-	- 2 1 30 20 50 3h											
Purpos	To Intro	To Introduce students with problem solving using C Programming language											
e													
			Cour	rse Outcom	es								
CO 1	To formula	te the algo	rithms for	simple pro	blems								
CO 2	Implement	ation of a	rrays and	functions.									
CO 3	Implementation of pointers and user defined data types.												
CO 4	Write indiv	ridual and	group rep	orts: prese	nt objectiv	es, describe	e test procedures						
	and results			-	*		_						

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101	A	English										
L	T	P	Credit	Major	Minor	Total	Time					
				Test	Test							
2	-	-	2	75	25	100	3h					
			Course	e Outcomes	5							
CO 1	Building up	uilding up the vocabulary										
CO 2	Students w	Students will acquire basic proficiency in English including writing skills										

UNIT-1

Vocabulary Building

- 1.1 The concept of Word Formation
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations.

UNIT-2

Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT-3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT-4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and Pushp Lata. Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

HM- 103LA				Language L	ab					
L	T	P	Credit	Practical	Minor	Tota	Time			
		Test 1								
-	-	2	1	30	20	50	3h			

OBJECTIVES

- 1.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm 2.
- Common Everyday Situations: Conversations and Dialogues 3.
- Communication at Workplace 4.
- Interviews 5.
- **Formal Presentations** 6.

BS-135A	<u>.</u>	Multivariable Calculus and Linear Algebra									
		Credit	Major	Minor	Total	Time					
				Test	Test						
3	1	-	4	75	25	100	3 h				
Purpose	To famil	iarize the	prospectiv	e enginee	ers with tec	hniques ir	calculus, sequence				
	& series, multivariable calculus, and linear algebra.										
			Cou	rse Outco	mes						
CO1							lculus to notions of				
	improper i	ntegrals. A	Apart from	some ap	plications i	t gives a ba	asic introduction on				
	Beta and G	amma fun	ctions.								
CO 2	To introdu	ce the fall	outs of Rol	lle's Theo	rem that is	fundamen	tal to application of				
	analysis to	Engineeri	ng proble	ms.							
CO 3	To develop	the tool	of power	series ar	ıd Fourier	series for	learning advanced				
	Engineerin	g Mathem	atics.								
CO 4	To familia	To familiarize the student with functions of several variables that is essential in									
	most branches of engineering.										
CO 5	To develop	To develop the essential tool of matrices and linear algebra in a comprehensive									
	manner.										
IINIIT I	<u> </u>	(121)									

UNIT-I (12 hrs)

Calculus: Evaluation of definite and improper integrals: Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions. Rolle's Theorem, Mean value theorems, Indeterminate forms and L'Hospital's rule.

UNIT-II (12 hrs)

Sequence and Series: Convergence of sequence and series, tests for convergence (Comparison test, D'Alembert's Ratio test, Logarithmic test, Cauchy root test, Raabe's test); Power series.

Fourier series: Introduction, Fourier-Euler Formula, Dirichlet's conditions, Change of intervals, Fourier series for even and odd functions, Half range sine and cosine series.

UNIT-III (09 hrs)

Multivariable Calculus (differentiation): Taylor's series (for one and more variables), series for exponential, trigonometric and logarithm functions.

Partial derivatives, Total differential, Chain rule for differentiation, Homogeneous functions, Euler's theorem, Jacobian, Maxima, minima and saddle points; Method of Lagrange multipliers.

UNIT-IV (07 hrs)

Matrices: Rank of a matrix, elementary transformations, elementary matrices, Gauss Jordon method to find inverse using elementary transformations, normal form of a matrix, linear dependence and independence of vectors, consistency of linear system of equations, linear and orthogonal transformations, eigenvalues and eigenvectors, properties of eigenvalues, Cayley – Hamilton theorem and its applications.

Suggested Books:

- 1. ErwinKreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. Erwin Kreyszig and Sanjeev Ahuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 6. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 7. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 8. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

BS-136A			Calculus a	nd Ordinar	y Differentia	l Equations			
					Total	Time			
				Test					
3 1 - 4 75 25 100 3									
Purpose	Purpose To familiarize the prospective engineers with techniques in multivariate integration, ordinar								
	and partia	l differentia	l equations a	ind complex	variables.				
			Cou	ırse Outcon	ies				
CO1	To introduce physical prod		athematical	tools for th	e solutions (of differentia	ll equations that model		
CO 2	To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.								
CO 3	To introduce the tools of differentiation and integration of functions of complex variable that are used in various techniques dealing engineering problems.								

UNIT-I (10 hrs)

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Ordinary differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-II (10 hrs)

Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar)

Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-III (10hrs)

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence & Curl and their properties, Directional derivative.

Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

UNIT-IV (10 hrs)

Complex Variable – Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties;

Complex Variable – Integration: Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof), Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).

Suggested Books:

- 1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 3. Erwin kreyszig and Sanjeev Ahuja, Applied Mathematics- II, Wiley India Publication, 2015.
- 4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edn., Wiley India, 2009.
- 5. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.
- 6. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.
- 7. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.
- 8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.
- 9. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008. 10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

Course code	ES-1	ES-109A								
Course title	Engineering Graphics& Design									
Scheme and Credits	L	T	P	Credits	Major	Minor	Tota	Time		
					Test	Test	l			
	1	2	0	3	75	25	100	3h		

Course Outcomes

Objective Projection	e- To expose students to the basics of Engineering Drawing, graphics and
CO-1	To learn about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric views to Orthographic views and vice-versa.

UNIT - I

Introduction to Engineering Drawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

Principles of Orthographic Projections-Conventions-Projections of Points and lines inclined to both planes; Projections of planes inclined to one principal Plane.

Projections of Regular Solids:

Solid with axis inclined to both the Planes;

UNIT - III

Sections and Sectional Views of Right Regular Solids:

Sectional views of simple right regular solids like prism, pyramid, Cylinder and Cone. Development of surfaces of Right Regular Solids-Prism, Pyramid, Cylinder and Cone;

UNIT-IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V. M. Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E. French, Charles J. Vierck, Robert J. Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Kataria and Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A. Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. Corresponding's to CAD Software Theory and User Manuals.

Course code	ES-1	ES-113LA								
Course title	Engineering Graphics & Design Practice									
Scheme and Credits	L	T	P	Credit	Practical	Minor	Total	Time		
	s Test									
	-	-	3	1.5	30	20	50	3h		
Pre-requisites(if any)	-									

Aim: To m	Aim: To make student practice on engineering graphics and design softwares and provide						
exposure t	exposure to the visual aspects of engineering design.						
CO-1	To give an overview of the user interface and toolboxes in a CAD software.						
CO-2	To understand to customize settings of CAD software and produce CAD drawing.						
CO-3	To practice performing various functions in CAD softwares.						
CO-4	To Learn about solid modelling and demonstration of a simple team design project.						

Module 1: Overview of Computer Graphics:

Listing the computer technologies that impact on graphical communication, Demonstrating Knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus(Button Bars), The Command Line(where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids];

Module2: Customization & CAD Drawing:

Setup of the drawing page and the printer ,including scale settings, Setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles;

Module3: Annotations, layering & other functions:

Applying dimensions to objects ,applying annotations to drawings; Setting up and use of Layers ,layers to create drawings, Create ,edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command ; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation , Computer-aided design(CAD) software modeling of parts and assemblies . Parametric and non-parametric solid, surface, and wire frame models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises . Dimensioning guidelines , tolerancing techniques; dimensioning and scale multi views of dwelling;

Module4: Demonstration of a simple team design project:

Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blue print form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modeling software for creating associative models at the component and assembly levels; floor plans that include: windows ,doors ,and fixtures such as WC, bath ,sink ,shower ,etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modeling (BIM).

Suggested Books(ES-113L):

1. Chris McMahon and Jimmie Browne, CAD/CAM – Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.

- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann,1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Corresponding set of)CAD Software Theory and User Manuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-111LA							
Course title	Manu	Manufacturing Processes Workshop						
Scheme and Credits	L	T	P	Credits	Practical	Minor Test	Total	Time
	0	0	3	1.5	60	40	100	3h
Pre-requisites (if any)								

	Aim: To make student gain a hands on work experience in a typical manufacturing industry environment.						
1	ndustry environment.						
CO-1	CO-1 To familiarize with different manufacturing methods in industries and work on						
	CNC machine.						
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,						
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.						
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.						

Manufacturing Processes Workshop Contents

- 1. Manufacturing Methods-casting, forming, machining, joining, advanced manufacturing methods
- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical & Electronics
- 5. Carpentry
- 6. Plastic moulding ,glass cutting
- 7. Metal casting
- 8. Welding(arc welding & gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

BS- 141A			Biology							
L	Т	P	Credit	Major Test	Minor Test	Total	Time			
2	1	-	3	75	25	100	3h			
Purpos	To familiarize the students with the basics of Biotechnology									
e		 								
		Co	urse Outco	mes						
CO1	Introduct	tion to es	sentials of	life and ma	cromolecules esse	ential for growt	h and			
	Developn	Development								
CO2	Defining the basic concepts of cell division, genes and Immune system									
CO3	Introduct	Introduction of basic Concept of Thermo Genetic Engg. & Biochemistry								
CO4	Introduct	tion of ba	sic Concep	t of Microbi	ology & Role of B	iology in Differ	ent Fields			

Unit - I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Hetrotrophs and Lithotrops (c) Habitat (d) Ammonia excretion:- ammonotelic, 17ricotelic and ureotelic. (e) Habitat- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

Enzymes as biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation. Concepts of recessiveness and dominance. Genetic Disorders: Single gene disorders in human. **Human traits**: Genetics of blood groups, diabetes type I & II.

Cell Division:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis:- Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell

Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics.

Role of Biology: Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

- 1. Introduction to Biotechnology, By Deswal & Deswal, Dhanpat Rai Publications N.A.
- 2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.
- 3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
 - D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.
- 4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Suggested Books:

- 1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.
- 2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.
- 3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.
- 4. Genetics by Snusted& Simmons.
- 5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press Washington DC.
- 6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A.(2003) W. H. Freeman and company, New York.
- 7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.
- 8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones & Bartlet Publishers, Boston.

ES-101A	BASIC ELECTRICAL ENGINEERING									
L	T	P	Credit Major Test			Min	or Test	Tota	l Tim	e(Hrs)
4	1	- 5 75			25		100	3		
	To familiarize the students with the basics of Electrical									
Purpose	Engineering									
	Course Outcomes									
CO1	Deals with st	eady state ci	rcuit anal	ysis subjec	t to DC.					
CO 2	Deals with A	C fundament	als & stea	dy state ci	rcuit res	ponse su	bject to A	AC.		
	Deals with introductory Balanced Three Phase System analysis and Single Phase									
CO 3	Transformer.									
CO 4	Explains the l	Basics of Ele	ctrical Ma	chines & E	lectrical	installat	tions			

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuit. Star-Delta transformation for resistors.

Network Theorems: Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodic signal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method. RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pure R, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts. including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phase emf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits. Relation between MMF & Reluctance. Hysteresis & Eddy current phenomenon. Principle, construction & emf equation Phasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor, capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg. by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals: by Bobrow, Oxford Univ. Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena & Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

ES-103LA	S-103LA BASIC ELECTRICAL ENGINEERING LAB									
L	T	Practic	Credit	Minor Test	(Practical)	Tota	Time (Hrs)			
		al				1				
-	-	2	1	20	30	50	3			
Purpose	To	familiarize	the stude	ents with the El	ectrical Techn	ology P	racticals			
	Course Outcomes									
	Understand basic concepts of Network									
CO1	theorems		_							
	Deals with ste	eady state f	frequenc	y response of	RLC circuit p	oarame	ters solution			
CO 2	techniques									
	Deals with introductory Single Phase Transformer									
CO 3	practicals									
	Explains the constructional features and practicals of various types of Electrical									
CO 4	Machines									

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency & Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. Study of Cut sections of DC Machines, Induction Motor
- 13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.