Bachelor of Technology Automation and Robotics (Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination

Semester I (w.e.f. session 2021-22)

	G						Examinat	ion Schedule	(Marks)	Duratio
S.No.	Course No./ Code	Subject	L:T:P	Hours /Week	Credits	Majo r	Minor Test	Practical	Total	n of exam (Hours)
1	BS-135A	Multivariable Calculus and Linear Algebra	3:1:0	4	4	75	25	0	100	3
2	BS-115A	Semiconductor Physics	3:1:0	4	4	75	25	0	100	3
3	ESR-115A	Basic Electrical and Electronics Engineering	3:0:0	3	3	75	25	0	100	3
4	ES-109A	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
5	ES-105A	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
6	BS-117LA	Semiconductor Physics Lab	0:0:3	3	1.5		20	30	50	3
7	ESR-117LA	Basic Electrical and Electronics Engineering Lab	0:0:2	2	1		20	30	50	3
8	ES-113LA	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
9	ES-107LA	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
		Total	13:4:10	27	22	375	205	120	700	

Bachelor of Technology Automation and Robotics (Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination

Semester II (w.e.f. session 2021-22)

	Course			Houng			Examinat	ion Schedule	(Marks)	Duration of Exam
S.No.	No./ Code	Subject	L:T:P	/Week	Credits	Majo r	Minor Test	Practical	Total	(Hours)
1	BS-136A	Calculus and Ordinary Differential Equations	3:1:0	4	4	75	25	0	100	3
2	BS-101A	Chemistry	3:1:0	4	4	75	25	0	100	3
3	ESR-121A	Python Programming	3:0:0	3	3	75	25	0	100	3
4	HM-101 A	English	2:0:0	2	2	75	25	0	100	3
5	BSR-113A	Biology for Engineers	2:0:0	2	2	75	25	0	100	3
6	ESR-119A	Material Science	3:0:0	3	3	75	25	0	100	3
7	BS-103LA	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
8	ESR-123LA	Python Programming Lab	0:0:2	2	1		20	30	50	3
9	HM-103LA	Language Lab	0:0:2	2	1		20	30	50	3
10	ES-111LA	Manufacturing Processes Workshop	0:0:3	3	1.5	-	20	30	50	3
		Total	16:2:10	28	23	450	230	120	800	

Bachelor of Technology Automation and Robotics (Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester III (w.e.f. session 2022-23)

	Course			Hanna			Examinat	ion Schedule	(Marks)	Duratio
S.No.	No./ Code	Subject	L:T:P	/Week	Credits	Majo r	Minor Test	Practical	Total	n of exam(H ours)
1	BS-204A	Higher Engineering Mathematics	3:0:0	3	3	75	25	0	100	3
2	RA -201A	Manufacturing Technology	3:0:0	3	3	75	25	0	100	3
3	RA-203 A	Sensors and Instrumentation	3:0:0	3	3	75	25	0	100	3
4	RA-205 A	Mechanics of Solids	3:0:0	3	3	75	25	0	100	3
5	RA-207 A	Electronic Devices and Circuits	3:0:0	3	3	75	25	0	100	3
6	ES-201A	Engineering Mechanics	3:0:0	3	3	75	25	0	100	3
7	RA-209 LA	Electronic Devices and Circuits Lab	0:0:2	2	1	-	40	60	100	3
8	RA-211 LA	Manufacturing Technology & CNC Lab	0:0:2	2	1	-	40	60	100	3
9	RA-217 LA	Mechanics of Solids Lab	0:0:2	2	1	-	40	60	100	3
		Total	18:0:6	24	21	450	270	180	900	
10	*RA-219A	Industrial Training-I	0:0:2	2	-	-	100	-	100	3
11	**MC901 A	Environmental Sciences	3:0:0	3	-	100	-	-	100	3

* **Industrial Training-I** is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 2nd semester and students will be required to get passing marks to qualify.

****MC901A Environmental Sciences:** is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

Bachelor of Technology Automation and Robotics (Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester IV (w.e.f. session 2022-23)

	Course			Hound			Examinat	ion Schedule	(Marks)	Duration of exam
S.No.	No./ Code	Subject	L: T:P	/Week	Credits	Majo r	Minor Test	Practical	Total	(Hours)
1	HTM-901	Universal Human Values - II	3:0:0	3	3	75	25	0	100	3
2	RA-202 A	Automatic Control Systems	3:0:0	3	3	75	25	0	100	3
3	RA-204 A	Computer Aided Design and Analysis	3:0:0	3	3	75	25	0	100	3
4	RA-206 A	Electrical Machines and Power	3:0:0	3	3	75	25	0	100	3
5	RA-208 A	Kinematics and Dynamics of Machines	3:0:0	3	3	75	25	0	100	3
6	RA-210 LA	Computer Aided Design Lab	0:0:2	2	1	-	40	60	100	3
7	RA-212 LA	Electrical Machines and Power Systems Lab	0:0:2	2	1	-	40	60	100	3
8	RA-214 LA	Kinematics and Dynamics of Machines Lab	0:0:2	2	1	-	40	60	100	3
		Total	15:0:6	21	18	375	245	180	800	
9	*MC902 A	Constitution of India [*]	3:0:0	3	-	100	-	-	100	3

MC902 A Constitution of India^{} is a mandatory credit less course in which the student will be required to get passing marks in the major test.

Note: All the students have to undergo 4 to 6 Week Industrial Training after 4th Semester which will be evaluated in 5th Semester.

Bachelor of Technology Automation and Robotics (Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination Semester V (w.e.f. session 2023-24)

	Course No /			Hours			Examinat	ion Schedule	(Marks)	Duratio
S.No.	Code	Subject	L: T:P	/Week	Credits	Major Test	Minor Test	Practical	Total	n of exam(H
1	RA-301A	Design of Machine Elements and Transmission Systems	3:0:0	3	3	75	25	0	100	3
2	RA-303A	Digital Electronics	3:0:0	3	3	75	25	0	100	3
3	RA-305A	Hydraulics and Pneumatics	3:0:0	3	3	75	25	0	100	3
4	RA-307A	Microcontroller and Embedded System Design	3:0:0	3	3	75	25	0	100	3
5	RAP-#	Program Elective -I	3:0:0	3	3	75	25	0	100	3
6	RA-309 LA	Digital Electronics Lab	0:0:2	2	1	-	40	60	100	3
7	RA-311LA	Microcontroller and Embedded System Design Lab	0:0:2	2	1	-	40	60	100	3
8	RA-313LA	Hydraulic Pneumatics Lab	0:0:2	2	1	-	40	60	100	3
9	RA-315LA	Project-I	0:0:4	4	2	-	00	100	100	3
		Total	15:0:10	25	20	375	245	280	900	
10	*RA-317A	Industrial Training-II	0:0:2	2	-	-	100	-	100	3
11	**MC903A	Essence of Indian Traditional Knowledge	3:0:0	3	-	100	-	-	100	3

[#] Program Elective- I								
Course No. Course Name								
RAP-301A	Robot Kinematics and Dynamics							
RAP-303A	Electrical Drives Control Systems							
RAP-305A	Industrial Design and Applied							
	Ergonomics							

*Industrial Training-II is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

** Essence of Indian Traditional Knowledge is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

The course of Program Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Bachelor of Technology Automation and Robotics (Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA

Scheme of Studies/Examination

Semester VI (w.e.f. session 2023-24)

	Course			Hours			Examination S		n Schedule (Marks)	
S.No	. No./ Code	Subject	L: T:P	/Week	Credits	Majo r	Minor Test	Practical	Total	n of exam(H
1	RA-302 A	PLC & Industrial Automation	3:0:0	3	3	75	25	0	100	3
2	RA-304 A	Principles of Robotics	3:0:0	3	3	75	25	0	100	3
3	RA-306 A	Digital Image Processing & Vision System	3:0:0	3	3	75	25	0	100	3
4	HM-302A	Research Methodology & IPR	3:0:0	3	3	75	25	0	100	3
5	RAP-*	Program Elective -II	3:0:0	3	3	75	25	0	100	3
6	RA-308LA	Robotic Simulation Lab	0:0:2	2	1	-	40	60	100	3
7	RA-310LA	PLC SCADA and HMI Lab	0:0:2	2	1	-	40	60	100	3
8	RA-312LA	Project -II	0:0:6	6	3	-	-	100	100	3
		Total	15:0:10	25	20	375	205	220	800	

	*Program Elective- II							
Course No.	Course Name							
RAP-302A	Neural Network and Fuzzy System							
RAP-304A	Sensors Technology							
RAP-306A	Industrial Robotics and Material Handling							
	Systems							

Note: All the students have to undergo 4 to 6 weeks Industrial Training after 6th semester which will be evaluated in 7th semester.

** Value Education is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

The course of Program Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

Bachelor of Technology Automation and Robotics (Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination

Semester VII (w.e.f. session 2024-25)

	Course No /				Hours				Examinati	ion Schedule	(Marks)	Duration of exam
S.No.	Code	Subject	L:T	:P	/Week	Credits	Majo r		Minor Test	Practical	Total	(Hours)
1	RA-401A	CNC Machine and Metrology	3:0:	:0	3	3	75		25	0	100	3
2	RA-403A	Automation System Design	3:0:	:0	3	3	75	5	25	0	100	3
3	RAO-*	Open Elective- I	3:0:	:0	3	3	75	5	25	0	100	3
4	RAP [#]	Program Elective- III	3:0:	:0	3	3	75	5	25	0	100	3
5	RAP##	Program Elective- IV	3:0:	:0	3	3	75	5	25	0	100	3
6	RA-405 LA	Advanced Robotics Lab	0:0:	:2	2	1	-		40	60	100	3
7	RA-407 LA	Automation System Design Lab	0:0:	:2	2	1	-		40	60	100	3
8	RA-409 LA	Project-III	0:0:	:6	6	3	-		100	100	200	3
		Total	15:0:	10	25	20	37:	5	305	220	900	
9	**RA-411 LA	**Industrial Training -III	0:0:2	2	2	-			100	-	100	3
	×	[*] Open Elective -I			Γ				# P	rogram Elect	ive -III	
Cour	rse No. Course	e Name			-	Course No. Course Name						
RAO	-401A Fundar	mentals of IoT and its Applications				RAP-401A		Indu	strial Robot	Applications		
RAO	-403A Industr	ry 4.0				RAP-403A		Mob	Mobile Robotics			
RAO	-405A Industr	rial Safety and Standards		J	-	RAP-405A		Mod	elling & Sim	ulation		

** Industrial Training-III is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 6th semester and students will be required to get passing marks to qualify

The course of Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

	## Program Elective -IV
Course No.	Course Name
RAP-407A	Machine Learning for Robotics
RAP-409A	Robotic Programming
RAP-411A	Artificial Intelligence & Expert System in Automation

Bachelor of Technology Automation and Robotics (Credit Based) KURUKSHETRA UNIVERSITY, KURUKSHETRA Scheme of Studies/Examination

Semester VIII (w.e.f. session 2024-25)

				TT			Examinat	ion Schedule	(Marks)	Duratio
S.No.	Course No./ Code	Subject	L: T:P	Hours /Week	Credits	Major Test	Minor Test	Practical	Total	n or Exam (Hours)
1	RA-402 LA	Project-IV	0:0:8	8	4	-	100	100	200	3
2	RAO-*	Open Elective-II	3:0:0	3	3	75	25	0	100	3
3	RAO-**	Open Elective-III	3:0:0	3	3	75	25	0	100	3
4	RAP-#	Program Elective-V	3:0:0	3	3	75	25	0	100	3
5	RAP-##	Program Elective-VI	3:0:0	3	3	75	25	0	100	3
		Total	12:0: 8	20	16	300	200	100	600	

	[#] Program Elective- V		##Program Elective- VI
Course No.	Course Name	Course No.	Course Name
RAP-402 A	Artificial Intelligence for Robotics	RAP-408 A	Object Oriented Programming and Data Structures
RAP-404 A	Modern Robotics	RAP-410 A	Totally Integrated Automation
RAP-406 A	Maintenance and Safety Engineering	RAP-412 A	Flexible Manufacturing Systems

	*Open Elective- II	**Open Elective-III			
Course No.	Course Name	Course No.	Course Name		
RAO-402A	Total Quality Management	RAO-408A	Entrepreneurship		
RAO-404A	Quality and Reliability Engineering	RAO-410A	Computer Integrated Manufacturing Systems		
RAO-406A	Field and Service Robotics	RAO-412A	Industrial Drives for Automation		

The course of Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (whichever is smaller) of the section.

	Credits
Basic Sciences	24
Open Elective	9
Program Elective	18
HUM	9
Engineering Sciences	24
Project	13
Engg. Core	63
Total	160

Semester-1

BS-135A]	Multivaria	ble Calcu	lus and Lin	ear Algebr	a			
L	Т	T P Credit Major Minor Total Time								
				Test	Test					
3	1	-	4	75	25	100	3 Hr			
Purpose	To famili	iarize the j	prospectiv	e enginee	ers with tec	chniques ir	i calculus, sequence			
	a series,	munuvaria	able calcul	rse Autco	mes	d.				
CO1	To introduce the idea of annlying differential and integral calculus to notions of									
001	improper i	ntegrals. A	a of upply Apart from	some ap	plications i	t gives a ba	asic introduction on			
	Beta and G	amma fun	ctions.	•		C				
CO 2	To introdu	ce the fallo	outs of Rol	le's Theo	rem that is	fundamen	tal to application of			
00.0	analysis to	Engineeri	ng problei	<u>ms.</u>	1.0					
CO 3	To develop	the tool	of power	series ar	id Fourier	series for	learning advanced			
<u> </u>	To familia	ig Mathem	alics. Ident with	function	s of severa	lvariahlee	s that is essential in			
LUT	most brand	ches of eng	ineering.	i iunction	5 01 Severa		s that is essential in			
CO 5	To develop	the esser	, <u> </u>	of matrice	s and linea	r algebra	in a comprehensive			
	manner.					0	•			
UNIT-I					(12 h	rs)				
Calculus:	Evaluation o	of definite	and impro	oper integ	rals: Beta	and Gamm	a functions and their			
properties;	Application	s of definite	e integrals t	to evaluate	e surface are	eas and volu	imes of revolutions.			
Kolle's The	brem, Mean	value theor	ems, indet	erminate i	orms and L	HOSPITALS	rule.			
Sequence a	and Series:	Convergen	ce of seque	ence and se	eries, tests f	or converg	ence (Comparison test.			
D'Alembert	's Ratio test,	Logarithm	ic test, Cau	chy root te	est, Raabe's	test); Powe	r series.			
Fourier set	ries: Introdu	iction, Fou	rier-Euler	Formula,	Dirichlet's	conditions	, Change of intervals,			
Fourier ser	ies for even a	and odd fur	nctions, Ha	lf range sir	ne and cosin	e series.				
UNIT-III		. ():66		P . 1. J	(09 h	rs)				
exponentia	ble Calculu	s (anneren tric and log	arithm fun	l aylor s se	eries (for or	ie and mor	e variables), series for			
Partial deri	vatives. Tota	al different	ial. Chain r	ule for dif	ferentiation	. Homogen	eous functions. Euler's			
theorem, Ja	cobian, Maxi	ima, minim	a and sadd	le points;	Method of L	agrange mi	ıltipliers.			
UNIT-IV					(07 h	irs)				
Matrices: I	Rank of a ma	trix, elemer	ntary trans	formation	s, elementar	y matrices	Gauss Jordon method			
to find inve	rse using ele	ementary tr	ansformati	ions, norm	al form of a	matrix, line	ear dependence and			
transforma	tions eigenv	s, consister	icy of lineal	r system o	iequations,	inear and	orthogonal ov – Hamilton			
theorem an	d its applica	tions.	eigenvector	s, propert	les of eigen	values, Cayl	ley – fiamiton			
Suggested	Books:									
1.ErwinKre	yszig, Advan	ced Engine	ering Math	nematics, 9	th Edition, J	John Wiley	& Sons, 2006.			
2. Erwin Kr	2. Erwin Kreyszig and Sanjeev Ahuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.									
3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.										
4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.										
5. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11 th Reprint, 2010.										
6. D. Poole,	Linear Algeb	ora: A Mode	ern Introdu	ction, 2nd	Edition, Bro	ooks/Cole,	2005.			
7. N.P. Bali 2008.	and Manish	Goyal, A te	ext book of	Engineeri	ng Mathem	atics, Laxm	i Publications, Reprint,			
8. B.S. Grew	al, Higher Ei Daper setter	ngineering r will set t ł	Mathemati 1e paper a	.cs, Khanna s per the (a Publishers question pa	s, 36th Editi Aper templ	on, 2010. ates provided.			

BS-′	115A	Semiconductor Physics							
L		Т	P Credit Major Minor Test		Minor Test	Total	Time		
3		1	-	4	75	25	100	3H	
Purpose	• To introduce the fundamentals of solid-state physics and its applications to the students.								
	Course Outcomes								
CO1	To m	ake the stud	ents aware of	basic termin	ology of c	rystal structu	re.		
CO 2	Introd	duce the el	ementary qua	ntum mecha	anics, wh	ich will be u	seful in u	nderstanding the	
	concepts of solid-state physics.								
CO 3	Discu	Discussion of classical free electron theory, quantum theory and Band theory of solids.							
CO 4	Basic	s and applic	ations of sem	iconductors.					

Unit - I

Crystal Structure: Crystalline and Amorphous solids, Crystal Structure: lattice translation vector, symmetry operations, space lattice, basis; Unit cell and Primitive cell, Fundamental types of lattices: two-dimensional and three dimensional Bravais lattices; Characteristics of Unit cells: Simple Cubic (SC), Body Centred Cubic (BCC), Face Centred Cubic (FCC), Hexagonal Close Packed (HCP) structure; Simple crystal structures: Sodium Chloride, Cesium Chloride, Diamond, Cubic Zinc Sulfide; Miller Indices, Bonding in Solids, Point defects in crystals: Schottky and Frenkel defects.

Unit – II

Quantum Theory: Need and origin of Quantum concept, Wave-particle duality, Phase velocity and group velocity, Uncertainty Principle and Applications; Schrodinger's wave equation: time-dependent and time –independent; Physical Significance of wave function ψ .

Unit – III

Free Electron Theory: Classical free electron theory: electrical conductivity in metals, thermal conductivity in metals, Wiedemann-Franz law, success and drawbacks of free electron theory; Quantum free electron theory: wave function, eigen values; Fermi-Dirac distribution function, Density of states, Fermi energy and its importance, Thermionic Emission (qualitative).

Band theory of Solids: Bloch theorem, Kronig-Penney Model (qualitative), E versus k diagram, Brillouin Zones, Concept of effective mass of electron, Energy levels and energy bands, Distinction between metals, insulators and semiconductors, Hall effect and its Applications.

Unit –IV

Semiconductors: Conduction in Semiconductors, Intrinsic Semiconductors: Conductivity of charge carriers, Carrier concentration in intrinsic semiconductors; Extrinsic Semiconductors: n-type semiconductors, p-type semiconductors, charge carrier concentration in extrinsic semiconductors.

Semiconductor Devices: The p-n junction, Current-voltage characteristics of p-n junction; The Transistor: Bipolar Junction Transistor (BJT), Field Effect Transistor (FET), Metal-Semiconductor Junction (Ohmic and Schottky); Semiconductor Laser.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Introduction to Solid State Physics, John Wiley & Sons. .
- 3. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 4. Solid State Physics, New Age International (P) Limited.
- 5. A Textbook of Quantum Mechanics, McGraw Hill Education (India) Private Limited. Introduction to Nanotechnology, John Wiley & Sons.

BS-117	Δ		Semiconductor Physics Lab								
L		T P Credit Practical Minor Test Total Time									
-	<u>3</u> 1.5 <u>30</u> 20 <u>50</u> <u>3</u>						3H				
Purpo	Purpose To give the practical knowledge of handling the sophisticated instruments.										
Course Outcomes											
CO	Tor	nake the stu	udents fan	hiliar with the	e experiments r	elated with Semi	conductor Ph	vsics.			

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the V-I characteristics of a p-n diode.
- 2. To find the flashing and quenching potential of Argon and to find the capacitance of unknown capacitor.
- 3. To find the value of Planck's constant by using photoelectric cell.
- 4. To find the temperature coefficient of resistance by using Pt resistance thermometer by post office box.
- 5. To find the ionization potential of Argon/Mercury using a thyratron tube.
- 6. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 7. To study the characteristics of (Cu-Fe, Cu-Constantan) thermocouple.
- 8. To find the value of Hall Coefficient of semiconductor.
- 9. To find the value of e/m for electrons by Helical method.
- 10. To find the band gap of intrinsic semiconductor using four probe method.
- 11. To calculate the hysteresis loss by tracing a B-H curve.
- 12. To find the frequency of ultrasonic waves by piezoelectric methods.
- 13. To verify Richerdson thermionic equation.

Suggested Books:

C. L. Arora, B. Sc. Practical Physics, S. Chand. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH. S.L. Gupta & V. Kumar, Practical Physics, Pragati Prakashan.

ESR-											
115A		BASIC ELECTRICAL AND ELECTRONICS ENGINEERING									
L	Т	Р	Credit	Major Test	Minor Test	Total	Time (Hrs)				
3	0	-	3	75	25	100	3				
	1. Understan	d Electrical	& Electro	nics Engineering Fund	amentals.						
	2. Acquire specific knowledge and skills so as to comprehend how electric,										
	magnetic and electronic circuits are applied in practice.										
Purpose											
			Cou	rse Outcomes							
	Describe the	performan	ce of an e	electric circuit as well	as solving bo	th single	phase and				
CO1	three-phase A	AC circuits in	ı sinusoid	lal steady state.							
CO 2	Predict about	t electrical s	afety and	implementation of el	ectric wiring.						
	Illustrate various rotating electric machines, with application of motors in particular,										
CO 3	transducers a	and electric	batteries								
CO 4	Identify and e	explain vari	ous types	of operational amplifi	ier.						

Unit-I

(**DC & AC Circuits**): Introduction to DC and AC circuits, Active and passive two terminal elements, Ohms law, Voltage-Current relations for resistor, inductor, capacitor, Kirchhoff's laws, Ideal sources –equivalent resistor, current division, voltage division, Sinusoids, Generation of AC, Average and RMS values, Form and peak factors, Analysis of R-L, R-C and R-L-C series circuits.

(Magnetic Circuits and Transformers): Magnetic effects of electric current, Law of Electromagnetic Induction, Self-Inductance, Mutual Inductance, Single Phase Transformer: Construction, Working principle, Efficiency.

Unit-II

(Electrical Safety and Wiring): Safety measures in electrical system, types of wiring, Difference between grounding and earthing, Basic principles of earthing, components of earthing system.

(Single Phase Transformer) (qualitative analysis only): Concept of magnetic circuits. Relation between MMF & Reluctance. Hysteresis & Eddy current phenomenon. Principle, construction & emf equation Phasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-III

(**Rotating Electrical Machines**): Operating characteristics of DC motor, working principle, construction and applications of Induction motor, Brushed DC motor, Geared DC motor, Brushless DC motors, Servo Motors, Stepper motors, Linear DC motor.

(**Transducers**): Principle of sensing, Basic requirements of transducers, classification of transducers, passive transducers: capacitive, inductive, LVDT, potentiometric, strain gauge, thermistor, Hall-Effect, Active transducers: piezoelectric, photoelectric and thermocouple, Tri-axial Sensors: Gyroscopes, Accelerometers, Magnetometers.

Unit-IV

(**Batteries**): Selecting Battery: Basic Battery Specifications, common parameters of battery/applications, Different types of Batteries used in different applications, Power Supplies: Linear and SMPS.

(**Operational Amplifiers**): Op-amp and its characteristics: Input Impedance, Output Impedance, Gain, Bandwidth, Open loop & closed loop configurations. Basic op-amp circuits: Inverting & Non-inverting voltage amplifiers, Comparator, adder, subtractor, integrator, differentiator.

Text Books:

T1: Basic Electrical Engineering by D. P. Kothari and I. J. Nagrath, 2nd Edition, McGraw-Hill Education (India) Pvt Limited.

T2: Basic Electrical and Electronics Engineering by S. K. Bhattacharya, 2nd Edition, Pearson.

T3: Electronic Devices and Circuit Theory by R. L. Boylestad and L. Nashelsky, 11th Edition, Pearson.

T4: Op-Amps and Linear Integrated Circuits by Ramakant A. Gayakwad, 4th Edition, PHI.

T5: A course in Electrical & Electronics Measurement & Instrumentation by A. K. Sawhney, 4th Edition, Dhanpat Rai and Co.

T6: Battery Reference Book by Newnes, 3rd Edition, Thomas Crompton. Download Here **Reference Books:**

R1: Electric Circuits by Charles K. Alexander & Matthew N. O. Sadiku, 4th Edition, McGraw-Hill Publication.

R2: Electrical Engineering Fundamentals by Vincent Del Toro, 2nd Edition, PHI.

R3: Electronic Principles by Albert Paul Malvino, 6th Edition, Tata McGraw Hill.

R4: Digital Design by M. Mano, 3rd Edition, Pearson.

R5: Electric Machines by Ashfaq Hussain, 3rd Edition, Dhanpat Rai and Co.

ESR- 117LA	BASI	C ELECTRICAL	AND ELI	ECTRONICS E	NGINEERING	LAB		
L	Т	Pra ctic al	Credi t	Minor Test	(Practical)	Tota I	Time (Hrs)	
-		- 2	1	20	30	50	3	
Purpose	 To understand and verify kirchhoff's laws. To design led based circuit using arduino and analyze the result. To Interface inverting and non-inverting operational amplifier and determine the gain of both amplifiers. 							
Course Out	comes							
C01	Students w	vill be able to unde	erstand and	d verify kirchho	ff's laws.			
CO 2	Students w	Students will be able to establish relationship between voltage and current in series R-L circuit.						
CO 3	Students w	Students will be able to demonstrate the working of LVDT.						
CO 4	Students w	vill be able to desi	gn LED ba	ased circuit usin	g arduino and a	nalyze th	ne results.	

LIST OF EXPERIMENTS

1. To verify kirchhoff's current law.

2. To verify kirchhoff's voltage law.

3. To study voltage-current relationship in an R-L series circuit and to determine the power factor of the circuit.

4.To verify and demonstrate the working of LVDT.

5. To design a LED flasher.

6. To design Christmas dual led chaser lights.

7. To design a door bell using push button.

8. To design automatic street light using LDR.

9.. To measure gain of inverting operational amplifier.

10. To measure gain of non- inverting operational amplifier.

Note: At least 9 out of the listed experiments to be performed during the semester.

Course code	ES-1	09A						
Course title	Eng	Engineering Graphics & Design						
Scheme and Credits	L	Т	Р	Credits	Major Test	Minor Test	Tota l	Time
	1	0	2	3	75	25	100	3Hr
		Co	urco (Jutcomos				

Course Outcomes

Objective- To expose students to the basics of Engineering Drawing, graphics and
Projections.CO-1To learn about construction of various types of curves and scales.

C0-1	To real if about construction of various types of curves and scales.
CO-2	To learn about orthographic projections of points, lines and planes.
CO-3	To Learn about the sectional views and development of Right regular solids
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric
	views to Orthographic views and vice-versa.

UNIT - I

Introduction to Engineering Drawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

Principles of Orthographic Projections-Conventions-Projections of Points and lines inclined to both planes; Projections of planes inclined to one principal Plane.

Projections of Regular Solids:

Solid with axis inclined to both the Planes;

UNIT - III

Sections and Sectional Views of Right Regular Solids:

Sectional views of simple right regular solids like prism, pyramid, Cylinder and Cone. Development of surfaces of Right Regular Solids-Prism, Pyramid, Cylinder and Cone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V. M. Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E. French, Charles J. Vierck, Robert J. Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Kataria and Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A. Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. Corresponding's to CAD Software Theory and User Manuals.

Course code	ES-1	ES-113LA						
Course title	Engi	Engineering Graphics & Design Practice						
Scheme and Credits	L T P Credit Practical Minor Total Time						Time	
				S		Test		
	-	-	3	1.5	30	20	50	3Hr
Pre-requisites (if any)	-	-						

Aim: To make student practice on engineering graphics and design softwares and provide exposure to the visual aspects of engineering design.

 CO-1 To give an overview of the user interface and toolboxes in a CAD software. CO-2 To understand to customize settings of CAD software and produce CAD drawing. CO-3 To practice performing various functions in CAD softwares. CO-4 To Learn about solid modelling and demonstration of a simple team design project. 		
 CO-2 To understand to customize settings of CAD software and produce CAD drawing. CO-3 To practice performing various functions in CAD softwares. CO-4 To Learn about solid modelling and demonstration of a simple team design project. 	CO-1	To give an overview of the user interface and toolboxes in a CAD software.
CO-3To practice performing various functions in CAD softwares.CO-4To Learn about solid modelling and demonstration of a simple team design project.	CO-2	To understand to customize settings of CAD software and produce CAD drawing.
CO-4 To Learn about solid modelling and demonstration of a simple team design project.	CO-3	To practice performing various functions in CAD softwares.
to it is a bout bout bout modeling and demonstration of a simple team design project	CO-4	To Learn about solid modelling and demonstration of a simple team design project.

Module 1: Overview of Computer Graphics:

Listing the computer technologies that impact on graphical communication, Demonstrating Knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus(Button Bars),The Command Line(where applicable),The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids];

Module2: Customization & CAD Drawing:

Setup of the drawing page and the printer ,including scale settings, Setting up of units and drawing limits ;ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles;

Module3: Annotations, layering & other functions:

Applying dimensions to objects ,applying annotations to drawings ;Setting up and use of Layers ,layers to create drawings ,Create ,edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen);Printing documents to paper using the print command ;orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation ,Computer-aided design(CAD) software modeling of parts and assemblies .Parametric and non-parametric solid, surface, and wire frame models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises .Dimensioning guidelines , tolerancing techniques; dimensioning and scale multi views of dwelling;

Module4: Demonstration of a simple team design project:

Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blue print form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modeling software for creating associative models at the component and assembly levels; floor plans that include: windows ,doors ,and fixtures such as WC, bath ,sink ,shower ,etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modeling (BIM).

Suggested Books(ES-113L):

- 1. Chris McMahon and Jimmie Browne, CAD/CAM Principle Practice and Manufacturing Management, Addison Wesley England, Second Edition, 2000.
- 2. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd.
- 3. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons.
- 4. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 1989
- 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992.
- 6. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice Hall.
- 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 10. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 11. (Corresponding set of)CAD Software Theory and User Manuals
- 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi.
- 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992.
- 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.
- 16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

ES-105A		Programming for Problem Solving							
L	Т	Р	Credit	Major	Minor	Total	Time		
				Test	Test				
3	-	-	3	75	25	100	3Hr		
Purpos	To	familiarize	the studer	nts with the	basics of (Computer S	System and C		
е	Programming								
Course Outcomes									
CO 1	Describe	the over	view of (Computer	System a	nd Levels	of Programming		
	Languages.								
CO 2	Learn to translate the algorithms to programs (in C language).								
CO 3	Learn description and applications of conditional branching, iteration and								
	recursion	•							
CO 4	To use ar	rays, point	ers and str	uctures to f	formulate a	algorithms	and programs.		

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

UNIT – III

Arrays: Definition, types, initialization, processing an array, String handling. Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of union.

Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. Subrata Saha, Subhodip Mukherjee: Basic Computation & Programming with 'C'-Cambridge University Press.
- 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4. E Balagurusamy : Programming in ANSI C, TMH Education.
- 5. Pradip Dey and ManasGhose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6. Forouzan Behrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India.
- 8. Yashwant Kanetker, "Let us C", BPB Publications.
- 9. A K Sharma, "Fundamentals of Computers & Programming" Dhanpat Rai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

ES-107LA			Program	ming for Pr	oblem Solv	ving Lab						
L	Т	Р	Credit	Practica	Minor	Total	Time					
				1	Test							
-	-	2	1	30	20	50	3Hr					
Purpose	Purpose To Introduce students with problem solving using C Programming language											
	Course Outcomes											
CO 1	To formu	late the al	gorithms f	or simple p	roblems							
CO 2	Impleme	ntation of	arrays an	d functions								
CO 3	Impleme	ntation of	pointers a	and user de	fined data	types.						
CO 4	Write in	dividual	and grou	ip reports	: present	objectives	s, describe test					

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

Semester-2

L	Т	Р	Credit	Major	Minor	Total	Time						
				Test	Test								
3	3 1 - 4 75 25 100												
Purpose	To familia	rize the pros	spective eng	ineers with	techniques in	n multivaria	te integration, ordinary						
	and partial differential equations and complex variables.												
	Course Outcomes												
CO1	To introduce effective mathematical tools for the solutions of differential equations that model												
	physical processes.												
CO 2	To acquaint	the student	with mathe	ematical too	ols needed in	evaluating	multiple integrals and						
	their usage.												
CO 3	To introduce	the tools of	differentiati	ion and inte	gration of fu	nctions of co	mplex variable that are						
	used in vario	us techniqu	es dealing er	igineering p	oroblems.								
UNIT-I					(10 hrs)								

Calculus and Ordinary Differential Equations

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.

Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-II

BS-136A

(10 hrs)

Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar)

Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

UNIT-III

Vector Calculus: Introduction, Scalar and Vector point functions, Gradient, divergence & Curl and their properties, Directional derivative.

Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

UNIT-IV

Complex Variable – Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties;

Complex Variable – Integration: Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof), Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).

(10 hrs)

(10hrs)

Suggested Books:

1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

3. Erwin kreyszig and Sanjeev Ahuja, Applied Mathematics- II, Wiley India Publication, 2015.

4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edn., Wiley India, 2009.

5. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.

6. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.

7. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.

8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

9. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

BS-101A				Chemi	stry						
L	Т	Р	Credit	Major Test	Minor Test	Total	Time				
3	1	-	4	75	25	100	3 Hr				
Purpose	To fan	To familiarize the students with basic and applied concept in chemistry									
C01	An ins	ight into th	e atomic an	d molecula	ar structure						
CO2	Analyt	ical technic	ques used ii	n identifica	tion of mol	ecules					
CO3	To und	lerstand Pe	riodic prop	oerties							
CO4	To und	lerstand th	e spatial ar	rangement	t of molecul	es					

UNIT - I

Atomic and molecular structure

Molecular orbitals of diatomic molecules (N₂, O₂, CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH₃)₆], [Ni(CO)₄], [PtCl₂(NH₃)₂] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications

Principles of spectroscopy and selection rules. Electronic spectroscopy (basic concept). Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications.

Periodic properties

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H₂O, NH₃, PCl₅, SF₆, CCl4, Pt(NH₃)₂Cl₂

UNIT - IV

Stereochemistry

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis.

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule (paracetamol and Aspirin)

Suggested Books:

1) University chemistry, by B. M. Mahan, Pearson Education

2) Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane

3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell

4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan

5) Physical Chemistry, by P. W. Atkins

6)Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore,5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

BS-103LA		Chemistry Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
-	-	3	1.5	30	20	50	3Hr				

Aim: To imp	part scientific approach and to familiarize with the experiments in chemistry relevant for
research proj	jects in higher semesters
CO-1	Understand and practice different techniques of quantitative chemical analysis to generate experimental skills and apply these skills to various analyses
CO-2	Learn to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments
CO-3	Develop the ability to understand and explain the use of modern spectroscopic techniques for analysing and interpreting the IR spectra and NMR spectra of some organic compounds
CO-4	Understand and practice different techniques of quantitative chemical analysis to generate experimental skills and apply these skills to various analyses

LIST OF EXPERIMENTS

- 1. To Determine the surface tension of a given liquid
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components, present in a given organic mixture by thin layer chromatography
- 4. To determine the alkalinity of a given water sample
- 5. Determination of the strength of a given HCl solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- 7. Determination of chloride content of a given water sample
- 8. To determine the calcium & magnesium or temporary & permanent hardness of a given water sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- 11. To find out the content of sodium, potassium in a given salt solution by Flame Photometer
- 12. To find out the λmax and concentration of unknown solution by a spectrophotometer
- 13. To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus
- 14. To determine the amount of dissolved oxygen present in a given water sample
- 15. To find out the pour point and cloud point of a lubricating oil
- 16. Determination of the strength of a given HCl solution by titrating it with standard NaOH solution using pH meter
- 17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: At least 9 experiments to be performed from the list.

ESR-121A		Python Programming												
L	T	Р	Credit	Major Test	Minor Test	Total	Time							
3	-	-	3	75	25	100	3HR							
Purpose	Learn	Learn Python, Design and program Python applications												
C01	Confi prob	Configure the python, pip and jupyter notebook to solve machine learning problems.												
CO2	Find struc	Find solution of various problems through python programs like data structure of python.												
CO3	Illust appro	rate of data	a storage i : file, RDBM	n seconda S and NoS(ry memory JL.	y through	programming							
CO4	Imple prope Deve	ementation er dataset. lop an appl	of hypothe	esis testing	g and class ot of super	ses of scik vised and	it-learn using unsupervised							
	learn	ing.			1		_							

UNIT - I

Introduction to Python: Software, Development Tools, Learning Programing with Python, Writing a Python Program, The Python Interactive Shell, Values and Variables, Expression and Arithmetic's.

Python Flow Controls: Conditional Executions: Boolean Expressions, if Statement, if-else statement, Compound Boolean Expression, pass statement, Nested Conditionals, Iterators: The While Statement, Definite Loops vs Indefinite Loops, The for Statement, Nest Loops, Abnormal Loop Termination, While/else and for/else

UNIT – II

Python Collections: Lists: Using Lists, List Traversal, List Membership, List Assignments and Equivalence, List Bounds, Slicing, List Element Removal, List Methods, Tuples, Dictionaries and Sets, Handling Exceptions

UNIT - III

Functions, Classes and Objects: Functions: Writing Functions That Accept Any Number of Arguments, Writing Functions That Only Accept Keyword Arguments, Attaching Informational Metadata to Function Arguments, Returning Multiple Values from a Function, Defining Functions with Default Arguments, Defining Anonymous or Inline Functions, Capturing Variables in Anonymous Functions, Making an N-Argument Callable Work as a Callable with Fewer

UNIT – IV

Files and I/O: Reading and Writing Text Data, Printing to a File, Printing with a Different Separator or Line Ending, Reading and Writing Binary Data, Writing to a File That Doesn't Already Exist, Performing I/O Operations on a String, Reading and Writing Compressed Datafiles, Iterating Over Fixed-Sized Records, Reading Binary Data into a Mutable Buffer, Memory Mapping Binary Files, Manipulating Pathnames, Testing for the Existence of a File, Getting a Directory Listing, Bypassing Filename Encoding, Printing Bad Filenames, Adding or Changing the Encoding of an Already Open File, Writing Bytes to a Text File, Wrapping an Existing File Descriptor As a File Object, Making Temporary Files and Directories, Communicating with Serial Ports, Serializing Python Objects, Reading and Writing CSV Data, Reading and Writing JSON Data, Parsing Simple XML Data

Suggested Books:

Text Books:

- 1. Fundamentals of Python Programming by Richard L. Halterman
- 2. Python Cookbook by David Beazley and Brian K. Jones

Reference Books:

1. Guido Van Rossum, Fred. L. Drake 'Introduction to Python' – Network Theory Limited – March 2011 2. Alex Martelli 'Python in a Nutshell' - O'Reilly - 2nd Edition, 2006

E-Resources: -

- 1. Python Programming Tutorials: https://www.tutorialspoint.com/python/index.htm
- 2. Video tutorials of Signal & Signal: https://nptel.ac.in/courses/106/106/106106145/

Course co	ode	FSR-	123	Δ							
Course tit	tle	Pyth	on P	rograi	nming I	.ab					
Scheme a	nd Credits	L	Т	Р	Credit	Practical	Minor	Total	Time		
					S		Test				
		-	-	2	1	30	20	50	3Hr		
Pre-requi	isites(if any)	-									
Aim: To ma	ake student will be develo	oping a	adequ	uate sk	ills in pro	gramming	and will be k	nown to	understand		
the implem	ientation of various applic		s usin	ig pyth	on						
$\frac{10-1}{10}$	Write, Test and Debug	g Pytho		ograms	uthon Dr	arama					
CO-2 Implement Conditionals and Loops for Python Programs CO-3 Use functions and represent Compound data using Lists Tuples and Dictionaries											
CO-4	Pood and write data fr	resent	to fil	os in D	thon and	ig Lists, Tup	nes and Dict		no		
0-4		UIII &		esiiry		I UEVEIOP A	pplication us	ang rygai			
		LIS	ST of	EXPER	IMENTS						
		210									
Write and ru	n a Python program that o	outputs	the v	value of	f each of	the following	ng expression	ns:			
		•		5.0/	9.0		0				
				5.0	/9						
				5/9	0.0						
				5/	9						
				9.0/ 9.0	5.0 V5						
				9/5	.0						
				9/	5						
Based on you	ur results, what is the rule	for ar	ithme	etic ope	rators wł	nen integers	and floating	point nu	mbers are		
used?											
					6		a 1 ·				
• Write	e and run a Python program	m that $(\mathbf{L}_{1}, \mathbf{r})$	asks	the use	r for a te	mperature 1	n Celsius and	d converts	s and output		
the le	single contraction of temp C	(Use u	ne foi	rmula g	given in u	ne example	above and so	olve for te	mp Fin		
• Here	is an algorithm to print or	1t n! (r	fact	orial) fi	rom 0! to	191.					
1. Set $f = 1$	is un urgoritanni to print ot	<i>at</i> 11. (1	I Iuet	oriur) n	0111 0. 10	17					
2. Set $n = 0$											
3. Repeat the	e following 20 times:										
a. Output n, '	"! = ", f										
b. Add 1 to n	1										
c. Multiply f	by n										
Using a for le	oop, write and run a Pytho	on prog	gram	for this	s algorith	m.					
• Modi 1 bill	fy the program above usinion.	ng a w	hile l	oop so	it prints	out all of the	e factorial va	alues that	are less than		
• Modi	ify the first program so it f	finds th	ne mi	nimum	in the ar	ray instead	of the maxir	num.			
• (Hard maxin	ler) Modify the first progr mum itself.	am so	that	it finds	the inde	x of the max	kimum in the	e array rat	her than the		
• Modi	ify the bubble sort program	n so it	impl	ements	the impr	ovements d	iscussed in c	class. (HII	NT: To exit		
the m loop	nain loop if the array is alr ends early.)	eady s	orted	l, simpl	y change	the loop va	riable to equ	al the las	t value so th		

Draw the Target symbol (a set of concentric Squares, alternating red and white) in a graphics window that is 200 pixels wide by 200 pixels high. Hint: Draw the largest circle first in red, then draw the next smaller circle in white, then draw the next smaller circle in red. Graphical objects drawn later appear "on top of" graphical objects drawn earlier. Try entering the following literal values at the prompt. (Hit ENTER after each) -5 -4.2 4.5 4.14 0.90 Something odd should occur. Describe it on paper. Reading from a CSV file of the given data using pandas library. For the given data, plot the scatter matrix for males only, and for females only. Do you think that the 2 sub-populations correspond to gender? For the given data, using python environment, apply, 1-sample t-test: testing the value of a population mean. For the given data, using python environment, apply, 2-sample t-test: testing for difference across populations Generate simulated data from python, apply simple linear and multiple linear regression analysis. Retrieve the estimated parameters from the model above. Hint: use tab-completion to find the relevant attribute. • Going back to the brain size + IQ data, test if the VIQ of male and female are different after removing the effect of brain size, height and weight. • Using matplotlib, visualize the simulated data with suitable statistical measures. Create a 5 X 5 rectangle whose top left corner is at (*row**5, *col**5). (Where is the bottom right corner?) • If the sum of the *row* and *col* numbers is even, set the fill color of the rectangle to white, otherwise set it to black. Then draw the rectangle.

HM-101	Α				En	olish							
L		Т	Р	Credit	Major Test	Minor Test	Total	Time					
2		-	-	2	75	25	100	3Hr					
				Cou	rse Outcon	nes							
CO 1	Bu	ilding up	the vocabula	ry									
CO 2	Stı	idents w	ill acquire ba	sic profic	iency in Er	glish includi	ng writing s	kills					
					UNIT-1	-							
Vocabula	ry Bı	uilding											
1.1 The co	ncep	t of Word	l Formation										
1.2 Root w	.2 Root words from foreign languages and their use in English												
1.3 Acqua	intan	ce with p	refixes and su	ffixes from	n foreign la	nguages in En	glish to form	derivatives.					
1.4 Synon	yms,	antonym	s, and standar	d abbrevia	ations.								
					UNIT-2								
Basic Wri	ting	Skills											
2.1 Senten	ice St	ructures											
2.2 Use of	phra	ses and c	lauses in sente	ences									
2.3 Impor	tance	e of prope	er punctuation										
2.4 Creatii	ng co	herence											
2.5 Organi	izing	principle	s of paragraph	is in docu	ments								
2.6 Techni	iques	s for writi	ng precisely										
					UNIT-3								
Identifyir	ng Co	mmon E	rrors in Writi	ing									

3.1 Subject-verb agreement

- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- **3.5** Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT-4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion
- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

- (i) Practical English Usage. Michael Swan. OUP. 1995.
- (ii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001
- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and Pushp Lata. Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

BSR-113A			E	BIOLOGY FO	R ENGINEE	RS					
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time				
				Test	Test		(Hrs.)				
2	0	0	2	75	25	100	3				
Purpose:	The pur mechanis course is biologica	The purpose of this course is to provide a basic understanding of biological mechanisms of living organisms from the perspective of engineers. In addition, the course is expected to encourage engineering students to think about solving biological problems with engineering tools.									
	1		C	ourse Outco	omes						
CO 1	Familiariz	ze the stude	ents with t	he basic oi	ganization	n of organ	isms and subsequent				
CO 2	Impart an understanding about the machinery of the cell functions that is ultimately responsible for various daily activities.										
CO 3	Provide k solve ther	nowledge a n	bout biolo	ogical prob	lems that i	require e	ngineering expertise to				

UNIT I

BASIC CELL BIOLOGY: Introduction: Methods of Science-Living Organisms: Cells and Cell theory Cell Structure and Function, Genetic information, protein synthesis, and protein structure, Cell Metabolism-Homoeostasis- Cell growth, reproduction, and differentiation.

UNIT II

BIOCHEMISTRY AND MOLECULAR ASPECTS OF LIFE: Biological Diversity --Chemistry of life: chemical bonds--Biochemistry and Human biology--Protein synthesis—Stem cells and Tissue engineering. ENZYMES AND INDUSTRIAL APPLICATIONS: Enzymes: Biological catalysts, Proteases, Carbonic anhydrase, Restriction enzymes, and Nucleoside monophosphate kinases—Photosynthesis

UNIT III

INTRODUCTION TO BIOMOLECULES: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms). Hierarch in protein structure: Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.

ENZYMES AS BIOCATALYSTS: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

UNIT IV

MECHANOCHEMISTRY: Molecular Machines/Motors—Cytoskeleton—Bioremediation—Biosensors NERVOUS SYSTEM, IMMUNE SYSTEM, AND CELL SIGNALING Nervous system--Immune system- General principles of cell signaling

ROLE OF BIOLOGY: Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors).

Text Book:

1. Introduction to Biotechnology, By Deswal & Deswal, Dhanpat Rai Publications N.A

2.Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.

- 3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.
- 4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Suggested Books:

1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.

2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

4. Genetics by Snusted& Simmons.

5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press Washington DC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4thed, Malacinski, G. M. (2003) Jones &Bartlet Publishers, Boston.

ESR-1194				ΜΔΤΕΡΙΔΙ	S SCIENCE								
Lecture	Tutorial	Practical	Credits Major Test		Minor Test	Total	Time (Hrs.)						
3	0	0	3	75	25	100	3						
Purpose:	To unders	o understand internal structure- properties relationship of different types of materials											
and learn about Metallographic analysis and Characterization.													
			Со	urse Outco	mes								
CO 1	To understa	and the Crys	tal structure	es and defo	rmation me	chanism in	various materials.						
CO 2	To study va	rious types o	of phase dia	grams, TTT	curve and Ir	on carbon	diagram. To learn						
	about diffe	<u>rent heat tre</u>	atment pro	cesses.									
CO 3	To learn ab	out the failu	re mechani	sms like Cre	ep and Fati	gue and de	signation of materials.						
CO 4	To study Ba	sics of Meta	llography a	nd Basic Pri	nciple involv	ed in the v	working of various						
	types of Ma	aterial chara	cterization	echniques.									

UNITI

Crystallography: Review of Crystal Structure, Space Lattice, Co-ordination Number, Number of Atoms per Unit Cell, Atomic Packing Factor; Numerical Problems Related to Crystallography. Crystal Imperfections and their Classifications, Point Defects, Line Defects, Edge & Screw Dislocations, Surface Defects, Volume Defects. **Introduction to Engineering materials and Standard Materials Designation:** Introduction to Engineering materials, Steel Terminology, Standard Designation System for Steels, Indian Standard specifications for steels as per BIS: Based on Ultimate Tensile Strength and based on Composition, AISI-SAE standard designation for Steels and Aluminium Alloys

Magnetic, Dielectric and Superconducting Materials: Ferromagnetism – domain theory – types of energy – hysteresis – hard and soft magnetic materials – ferrites - dielectric materials – types of polarization – Langevin-Debye equation – frequency effects on polarization - dielectric breakdown – insulating materials – Ferroelectric materials - superconducting materials and their properties.

UNIT II

Phase Diagrams: Alloy Systems, Solid solutions, Hume Rothery's Rules, Intermediate phases, Phase Diagrams, Gibbs Phase Rule, Cooling curves, The Lever Rule, binary phase diagrams, Applications of Phase Diagrams, Phase Transformation, Micro constituents of Fe-C system, Allotropic Forms of Iron ,Iron-iron carbide phase diagram, Modified Iron Carbon Phase Diagrams, Isothermal Transformation, TTT Curve,

Heat Treatment: Heat treatment of steels, Annealing, Normalising, Hardening, Tempering, Case Hardening, Ageing, Aus tempering and Mar tempering, Surface Hardening, Mass Effect, Equipments for Heat Treatment, Major Defects in Metals or Alloys due to faulty Heat treatment.

UNIT III

Deformation of Metal: Elastic and Plastic Deformation, Mechanism of Plastic Deformation, Slip; Critical Resolved Shear Stress, Twinning, Conventional and True Stress Strain Curves for Polycrystalline Materials, Yield Point Phenomena, Bauschinger Effect, Work Hardening.

Failure of Materials: Fatigue, Fatigue fracture, fatigue failure, Mechanismof Fatigue Failure, Fatigue Life calculations, Fatigue Tests, Theories of Fatigue.

Creep: Creep Curve , Types of Creep, Factors affecting Creep, Mechanism of Creep, Creep Resistant Material, Creep Fracture, Cre ep Test, Stress Rupture test.

New Materials: Ceramics – types and applications – composites: classification, role of matrix and reinforcement, processing of fiber reinforced plastics – metallic glasses: types , glass forming ability of alloys, melt spinning process, applications - shape memory alloys: phases, shape memory effect, pseudoelastic effect, NiTi alloy, applications – nanomaterials: preparation (bottom up and top down approaches), properties and applications – carbon nanotubes: types.

Materials Characterization Techniques: Characterization techniques suchas X-Ray Diffraction (XRD), Scanning Electron Microscopy, transmission electron microscopy, atomic force microscopy, scanning tunneling microscopy, Atomic absorption spectroscopy.

Text Books:

- 1. Material Science by S.L.Kakani, New Age Publishers.
- 2. The Science and Engineering of Materials, Donald R. Askeland , Chapman & Hall.
- 3. Fundamentals of Material Science and Engineering by W. D. Callister, Wiley.
- 4. FundamentalofLightMicroscopyandElectronicImagingbyDouglasB.Murphy, Kindle Edition 2001
- 5. Materials Science and Engineering, V. Raghvan
- 6. Phase Transformation in Metals and Alloys, D. A. Porter & K.E. Easterling

Reference Books:

- 7. Material Science by Narula, TMH
- 8. Metallographic Handbook by Donald C. Zipperian, Pace Technologies, USA.
- 9. Robert Cahn Concise Encyclopedia of Materials Characterization, SecondEdition:2nd Edition (Advances in Materials Science and Engineering) Elsevier Publication 2005.
- 10. Smart Materials and Structures by Gandhi and Thompson, Chapman and Hall.

HM-103LA		Language Lah										
L	Т	Р	Credit	Practical	Minor Test	Tota l	Time					
-	-	2	1	30	20	50	3Hr					

OBJECTIVES

- 1.
- Listening Comprehension Pronunciation, Intonation, Stress and Rhythm 2.
- 3. Common Everyday Situations: Conversations and Dialogues
- 4. Communication at Workplace
- Interviews 5.
- **Formal Presentations** 6.

ES-111LA									
Course title	Worl	Workshop Practice							
Scheme and Credits	L	Т	Р	Credits	Practical	Minor Test	Total	Time	
	0	0	3	1.5	30	20	50	3 Hr	
Pre-requisites (if any)					·				

Aim: To make student gain a hands-on work experience in a typical manufacturing industry environment.
 CO-1 To familiarize with different manufacturing methods in industries and work on CNC machine.
 CO-2 To learn working in Fitting shop and Electrical and Electronics shops,
 CO-3 To practice working on Carpentry and Plastic moulding/glass cutting jobs.
 CO-4 To gain hands on practice experience on Metal casting and Welding jobs.

Manufacturing Processes Workshop Contents

1.Manufacturing Methods-casting, forming, machining, joining, advanced manufacturing methods

- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical & Electronics
- 5. Carpentry
- 6. Plastic moulding, glass cutting
- 7. Metal casting
- 8. Welding (arc welding & gas welding), brazing

Suggested Books:

- 1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.
- 2. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.